蒟蒻CGH的专题学习成长历程
文章平均质量分 93
有作者的专题学习笔记,请各大大佬来点评
RainbowCrown
我不是归人,我是过客。
展开
-
多项式全家桶——Part.4 多项式ln、exp、快速幂
这拿头来学……原创 2020-09-03 20:05:05 · 766 阅读 · 0 评论 -
点分治学习小记
纯粹的划水原创 2020-08-07 21:18:01 · 156 阅读 · 0 评论 -
线性基学习小记
线性基(×)黑科技(√)原创 2020-08-07 15:35:32 · 182 阅读 · 0 评论 -
多项式全家桶——Part.3 多项式求逆、除法、开根号
多项式全家桶正式进入正片。原创 2020-08-03 20:54:43 · 938 阅读 · 0 评论 -
多项式全家桶——Part.2 多项式位运算
此划水文全为结论、板子,证明还得看大爷证明。原创 2020-08-03 15:17:26 · 307 阅读 · 0 评论 -
多项式全家桶——Part.1 多项式加减乘
多项式全家桶它lei了。原创 2020-07-24 21:33:18 · 617 阅读 · 1 评论 -
lucas定理、拓展lucas定理学习小结
lucas定理正题首先,这玩意就是下面这个式子:Cmn%p=Cm/pn/p∗Cm%pn%p%pC_m^n\%p=C_{m/p}^{n/p}*C_{m\%p}^{n\%p}\%pCmn%p=Cm/pn/p∗Cm%pn%p%p当且仅当ppp为质数。当然,还有一个形式:首先把n写成一个p进制下的东东:n=∑ai∗pin=\sum a_i*p^in=∑ai∗pi在把m写成一个p进制下的东东:m=∑bj∗pjm=\sum b_j*p^jm=∑bj∗pj然后Cmn=ΠCbiai%pC_m^n原创 2020-07-21 19:12:02 · 308 阅读 · 2 评论 -
拉格朗日插值法学习小结
前言似乎上个暑假就玩过这玩意了,当时还感叹为什么中考前没学。其实还挺简单的。历史这个就当故事看吧。在数值分析中,拉格朗日插值法是以法国十八世纪数学家约瑟夫·拉格朗日命名的一种多项式插值方法。许多实际问题中都用函数来表示某种内在联系或规律,而不少函数都只能通过实验和观测来了解。如对实践中的某个物理量进行观测,在若干个不同的地方得到相应的观测值,拉格朗日插值法可以找到一个多项式,其恰好在各个观测的点取到观测到的值。这样的多项式称为拉格朗日(插值)多项式。数学上来说,拉格朗日插值法可以给出一个恰好穿过原创 2020-05-24 10:52:35 · 2683 阅读 · 1 评论 -
min25筛学习小结
前言这玩意儿听说其大名好久了,但一直没学。那么这次就来补补课。好久没写博客了(其实是懒得写埃氏筛法这个有什么用呢,其实也只是一个思想。埃氏筛法其实就是用来筛质数的一个朴素方法(弱鸡我至今还在用过程大概就是:从2开始,把以后的2的倍数都打上标记,然后再找下一个没被标记的。找到3,把以后的3的倍数都打上标记,然后再找下一个没被标记的。……就没了。min25筛用处这个东东其实就是用来算某个积性函数f(i)f(i)f(i)的前缀和。可以在O(n34log n)O(\frac{原创 2020-05-20 12:18:19 · 288 阅读 · 0 评论 -
学习析合树小记
前言心态崩了这玩意不仅比较猎奇,而且网上有关资料还是参差不齐的。看WC2019LCA的ppt也是一头雾水(尤其是那个定义)最后在三个地方终于找到了有价值的东西。(自己看到下面的参考资料)然后想想还是写写博客加强印象以免忘记吧。正题引入我们看一道题:让我们来想想这题怎么做?有一个十分方便的方法——对于每次询问,我们考虑选出询问区间内的最大值与最小值。然后再找出选取最大到最小...原创 2019-12-12 16:19:44 · 321 阅读 · 0 评论 -
学习狄利克雷卷积和杜教筛小结
前言最近似乎没什么事干啊,那就学习数论一个。其中似乎不是那么偏门的就数杜教筛了吧 (特征多项式是什么啊)小结一下。积性函数前置知识什么是积性函数?畸形函数也就是唆,对于一个函数f(n)f(n)f(n)满足∀m,n(gcd(m,n)=1)f(m∗n)=f(n)∗f(m)\forall m,n(gcd(m,n)=1)f(m*n)=f(n)*f(m)∀m,n(gcd(m,n)=1)f(m∗...原创 2019-12-09 22:01:48 · 273 阅读 · 0 评论 -
学习反演小计
前言看完Vfleaking大爷 http://vfleaking.blog.uoj.ac/slide/87#/8感觉自己走入了个新世界,被震撼到了。瞬间学会绝大部分有关反演的东东。这里小结一哈。二项式反演先看一道神奇的题目:给你n个人排队,要求第i个人不能站在第i个位置上。求方案数。n<=105n<=10^5n<=105我知道你们心里想着那个叫做错排问题公式的东...原创 2019-11-30 09:21:51 · 607 阅读 · 0 评论 -
学习FFT(快速傅里叶变化)小记
楔子话说最近被什么“初三不会SAM就退役”等鬼话给迷惑了。 我至今不会SAM啊 symbol说不可以信这些鬼话。 然后又有这么一句话“初三不会FFT就退役” 就被诱惑去学FFT了。正文注:这些内容是在多项式专题讲师的指导下学的,不全也别怪我, 复数 引用一下定义 我们把形如a+bi(a,b均为实数)的数称为复数. 其中a称为实部,b称为虚部,i称为虚数单位. ...原创 2019-07-05 15:50:29 · 521 阅读 · 1 评论 -
学习NTT(快速数论变换)小记
前言以前一直知道FFT的这个思想,一直没有实现。本想着转C语言抛弃P语言后就码一码。但最近遇到了奇怪的题目,要用到NTT。于是就学了一发,借着各种板子好歹是学会了。简介NTT是什么?其实就是FFT,一样是求多项式卷积之类的东东。只不过没有利用到复数里面单位根的性质。有什么用?可以实现取模操作!具体操作原根:百度百科的欧拉函数比较费解。其实解释起来就是对于一个数Pg是它的...原创 2019-07-07 20:44:38 · 633 阅读 · 0 评论 -
学习splay或spaly小结
前言splay是伸展树,是平衡树中的一种。它主要就是利用神奇的旋转操作来让一颗二叉查找树维护东东。很早就学过它的旋转,如今早已忘光。于是接下来就权当新的学习。我好蔡啊!引入首先我们知道这个二叉查找树是一个十分美妙的树。但是光有这么一颗树是没有用的。但是一旦用上splay或spaly,可以维护修改、查询等简单操作。更甚者加入点、删除点、区间翻转这样的高级操作。而这一切都是从一个叫...原创 2019-06-27 17:23:13 · 212 阅读 · 0 评论 -
学习burnside、polya小结
1原创 2019-06-27 20:59:51 · 361 阅读 · 0 评论 -
学习计算几何基础知识小结
前言本来之前很早就在某czy的计算几何专题上了解了计算几何的一些小知识。然而当时太年轻,学不懂。到现在,突然来了热血。翻了必修四一遍又一遍,百度百科也是看了一遍又一遍。最终有所成,但是没复习,导致现在忘了许多。于是现在开始好好打篇博客来权当复习。向量这个东东很简单,指具有大小和方向的量。就是一个类似于箭头的线 (不是♂)这个东东高中讲到物理的正交分解之类的就知道是长什么样的了。其...原创 2019-03-08 12:25:15 · 425 阅读 · 2 评论 -
学习八数码拓展
前言八数码这个数一数二的入门题目,想必大家都会了。八数码题目描述输入源八数码形状,,输出移到目标形状所需步数。以前以为八数码拓展就是用IDA*、双向广搜等高大上的搜索来做。然而,有更高级的八数码问题。引入我们看到这样的一道题:jzoj100030. 【NOIP2017提高A组模拟7.8】为了爱情题意是:给你多个n*n的八数码矩阵(n为奇数且小于100),要求判断这个八数码矩阵能...原创 2019-01-08 12:23:10 · 342 阅读 · 0 评论 -
学习上下界网络流小记
前言这个上下界网络流是一个以前我这个巨弱弱想都不敢想的一个东西。然而,最近一次比赛居然考了这个东东。于是整个机房掀起了破烂学上下界网络流的热。那么我也来学学。预备知识要懂得很多很多的网络流知识比如最大流这种基础的。当然,还有一个流量的平衡条件:∑f(u,x)=∑f(x,v)\sum f(u,x)=\sum f(x,v)∑f(u,x)=∑f(x,v)这个条件可以用来判断可行性。为什...原创 2018-12-26 21:45:26 · 413 阅读 · 4 评论 -
学习类欧几里得小记
首先我们设mod表示取模(%)我们设[]表示当括号内判断条件为真则退出1,否则退出0关于欧几里得对于b&amp;amp;lt;&amp;amp;gt;0 满足:gcd(a,b)=gcd(b,a % b)证明与时间复杂度不多说了吧?复杂度证明贴上,看不懂也不怪我了。关于类欧几里得这个实际上是用欧几里得的时间复杂度与计算方法来弄的一种奇妙的算法。我们看一道题:求:∑d=1n(−1)⌊d∗r∗d⌋\sum_{d=...原创 2018-12-08 17:19:44 · 267 阅读 · 0 评论 -
2018暑假集训专题小结 Part.6
总DP的两种优化 1、四边形不等式优化 2、D1/D1动态规划优化 DP的各种题目四边形不等式优化我们在做各种动态规划的题目时,经常遇到类似于下面的方程: f[i,j]:=min(f[i,k]+f[k+1,j]+w(i,j)); 我们说,w(i,j)为附加函数。比如上面,就是一个附加的价值。(根据题意而异) 但是,上述方程直接暴力做是n^3的。那么我们就可以拿出优化。...原创 2018-08-07 22:25:55 · 231 阅读 · 0 评论 -
2018暑假集训专题小结 Part5
目录基础搜索算法 (Basic search algorithm) 复杂度玄学算法 (Uncertainty of Time Complexity) 正确性玄学算法 (Uncertainty of Correctness)基础搜索算法前言:此类算法一般是用来水部分分的。或者就是用来辅助一些算法。或者就是巧妙地利用题目性质做题,总之,很好用。百度优先搜索 上百度找题解,可以解...原创 2018-08-07 19:39:49 · 433 阅读 · 0 评论 -
2018暑假集训专题小结 Part.4
总后缀数组 AC自动机 后缀自动机 圆方树 Tarjan求强联通分量、点双、边双 树套树相关 费用流+KM算法 各种堆 √堆这个堆就是普普通通的堆,太简单了,以至于我不想讲。 就只介绍介绍支持的操作—— 加入一个新点。 查询最值。 删除堆顶的点。 好像就没啦。可合并堆(左偏树)这个左偏树特别厉害,是堆的一个神奇版。(废话) 首先,他支持...原创 2018-08-05 21:41:39 · 350 阅读 · 0 评论 -
2018暑假集训专题小结 Part.3
总后缀数组 AC自动机 后缀自动机 圆方树 Tarjan求强联通分量、点双、边双 树套树相关 √ 费用流+KM算法树套树前置技能—— 一大堆的数据结构。 线段树、权值线段树、树状数组等基本的 二叉搜索树、平衡树(splay、treap(无旋)、替罪羊等)、 hash(这个不是数据结构) 各种可持久化:可持久化线段树(主席树)、可持久化权值线段树、可持久化spl...原创 2018-07-17 19:35:40 · 483 阅读 · 0 评论 -
2018暑假集训专题小结 Part.2
总后缀数组 AC自动机 后缀自动机 圆方树 Tarjan求强联通分量、点双、边双 树套树相关 费用流+KM算法 √费用流(spfa版)首先费用流是个什么东东呢? 就是最大流的升级版——加了一个费用限制。 什么意思? 最简单的问题—— farmer John要从自来水厂引水来自己家,有n个水中转站,m条水管,水管一次性的,流量为w,那么farmer J...原创 2018-07-14 22:23:07 · 283 阅读 · 0 评论 -
2018暑假集训专题小结 Part.1
总后缀数组 AC自动机 后缀自动机 圆方树 Tarjan求强联通分量、点双、边双 树套树相关Tarjan这是定义 1、有向图G中,以顶点v为起点的弧的数目称为v的出度,记做deg+(v);以顶点v为终点的弧的数目称为v的入度,记做deg-(v)。 2、如果在有向图G中,有一条 (u,v)有向道路,则v称为u可达的,或者说,从u可达v。 3、如果有向图G...原创 2018-07-14 08:28:27 · 388 阅读 · 0 评论 -
浅谈树链剖分
首先把一个知识摆在前面:倍增。 这是个非常优秀的算法,他普遍应用与何处呢?像树上的倍增求LCA,序列中的倍增RMQ之类的算法,倍增在dp中也有广泛应用,可以大大优化时间和空间。 但是我相信,各位读者都是比本人智商高的人,于是倍增只讲讲一个RMQ。 RMQ有一个很优秀的算法就是DP。这个大家都很熟悉,众所周知,RMQ中多加一个修改操作,那么DP就失去的它的用武之地,也就是说,倍增在这里就不管用了原创 2017-08-14 22:13:00 · 4313 阅读 · 7 评论 -
详解——主席树
由来 主席树又称函数式线段树,顾名思义,也就是通过函数来实现的线段树然而我并不知道什么是函数式线段树,某位大爷说:“主席树与可持久化线段树没有区别”。我们暂且相信他怎么说。 主席树大概是 @fotile96 发明的,名字的由来是由于发明人的名字缩写。“HJT”(笑)或是主席树的近亲(可持久化)presistent≈(主席)president得名的吧。 好了,接下来我们来详细讲讲主...原创 2018-07-04 20:50:14 · 883 阅读 · 0 评论 -
学习拓展中国剩余定理小结
前言话说中国剩余定理好早就会了,但是一直木有接触过拓展的。只知道它是个什么东东。最近似乎需要它了,稍微学了学,似乎还挺简单的。小结一下~简介中国剩余定理我们都懂吧?而拓展则是把它后面的模数变成一个非质数,(当然,各个方程的模数互质)。然后求出最小的x的解。做法似乎拓展之后很难用原来的套路来搞了。怎么办?我们发现,我们可以利用一些奇怪的推柿子大法来合并柿子。考虑合并一下两个...原创 2019-09-13 14:36:31 · 190 阅读 · 0 评论 -
学习LCT小结
首先,LCT是什么呢? 我们看看百度百科—— LCT即自动细胞学检测系统,又称液基细胞学检测系统。是宫颈筛查的一种方法。 疏松结缔组织(loose connective tissue)又称蜂窝组织(areolar tissue),其特点是细胞种类较多,纤维较少,排列稀疏。疏松结缔组织在体内广泛分布,位于器官之间、组织之间以至细胞之间,起连接、支持、营养、防御、保护和创伤修复等功...原创 2019-09-27 22:20:20 · 345 阅读 · 0 评论