NOIP2005提高组题解

T1:谁拿了最多奖学金

考察知识:模拟,条件语句

算法难度:X 实现难度:X+

分析:初学者都能做,只要细心把所有条件都考虑完就可以了。

算法流程:

1.读入n

2.循环n次,一边读入数据一边判断可以得那些奖学金,并按题目要求处理

代码:

#include<cstdio>
#include<cstring>
char top_stu[25],name[25],ldr[5],west[5];
int sum,max_mon,mon,n,score1,score2,paper;
int main(){
	scanf("%d",&n);
	while(n--){
		mon=0;
		scanf("%s%d%d%s%s%d",name,&score1,&score2,ldr,west,&paper);
		if(score1>80&&paper>0) mon+=8000;
		if(score1>85&&score2>80) mon+=4000;
		if(score1>90) mon+=2000;
		if(score1>85&&west[0]=='Y') mon+=1000;
		if(score2>80&&ldr[0]=='Y') mon+=850;
		sum+=mon;
		if(mon>max_mon) max_mon=mon,strcpy(top_stu,name);
	}
	printf("%s\n%d\n%d\n",top_stu,max_mon,sum);
	return 0;
}

T2:过河

考察知识:动态规划,条件的处理,数学

算法难度:XXX 实现难度:XX+

分析:不看数据范围,这就是一道裸的动态规划题,但是数据特殊L可以很大,M最大值却很小,这就需要我们分析。

先将动态规划:

状态方程:f(i)表示从起点到i点踩到的最少石头数

状态转移:f(i)=\binom{min(f(i-k))}{min(f(i-k))+1}||k\epsilon (s,t)

方程下面那个加一表示坐标i上有石头

时间复杂度:O(L*(T-S)),显然暴力方法会超时

优化:当S!=T时如果两块石头距离相差超过100直接把距离看成100

原理:为什么S!=T时可以这样做呢?

解(xia)释(gao):

设X,Y是两块相邻石头的坐标且Y-X>=100

考虑X是否可以到Y,不妨设S=T-1

1*.当S!=1时,显然有S,T互质

则aS+bT(a,b为自然数)不能表示的最大整数为(S-1)(T-1),所以Y-X>=(S-1)*(T-1)时可以保证从X可以到达Y,也可以跳过Y

由于T<=10,显然100满足条件

再考虑S!=T-1则S<T-1,显然不能表示的最大整数一定不会增大,100还是符合条件

2*.S=1

先走Y-X-1步,到达Y-1此时青蛙可以跳过Y,也可以到达Y,满足要求

由解释可以看到,其实100并不是最小的满足要求的数,但是已经完全可以满足时间复杂度了

反思:(第一次AC在几个月前)第二次提交0分全部RE,我当时就震惊了,经过检查我没有把输入的数据排序,然后我又看了一遍原题,它并没有说数据不一定递增啊,而且样例数据还是递增的,那么有迷惑性。我又看了第一次的做题记录第一次也是0分,也是没有排序,这样的教训我居然忘了?!如果你没有排序很可能就只有20分了(然而我不小心把那20分也丢了),所以不管题目说没有最好都要排序,也就是:增强程序的鲁棒性很重要!

代码:

#include<cstdio>
#include<algorithm>
#define Min(var1,var2) (var1>var2?(var2):(var1))
int m,l,s,t;
int mp_pos[105],pos[105],f[10105],np=1;
int main(){
	scanf("%d%d%d%d",&l,&s,&t,&m);
	for(int i=1;i<=m;i++) scanf("%d",pos+i);
	std::sort(pos+1,pos+m+1);
	for(int i=1;i<=m;i++){
		if(pos[i]-pos[i-1]>=100) mp_pos[i]=mp_pos[i-1]+100;
		else mp_pos[i]=mp_pos[i-1]+(pos[i]-pos[i-1]);
	}
	if(s==t){//处理特殊情况 
		int cnt=0;
		for(int i=1;i<=m;i++) if(pos[i]%s==0) cnt++;
		printf("%d\n",cnt);return 0;
	}
	int RG=mp_pos[m]+1;
	for(int i=1;i<=RG+100;i++){
		f[i]=105;
		for(int k=s;k<=t;k++) if(i>=k)
			f[i]=Min(f[i],f[i-k]);
		if(mp_pos[np]==i) f[i]++,np++;
	}
	int ans=105; 
	for(int i=RG;i<=RG+100;i++) ans=Min(ans,f[i]);
	printf("%d\n",ans);
	return 0; 
}

T3:篝火晚会

没有读懂题目(T_T)。。。 。。。

T4:等价表达式

考察知识:字符串处理,模拟

算法难度:XXX+ 实现难度:XXXX

分析:第一眼看完这道题我想大多数人都是想模拟多项式运算,但仔细想想,我们可以用赋值法计算

我们赋给a一个具体的值并判断多项式运算后的值是否相等来判断两个多项式是否相等。

不过这种方法会不会准确性不够呢?会,如果你只赋一个值。

但是我们可以证明对于两个不完全相等的一元多项式,可以它们相等的值不超过两个多项式中最高次幂的值

所以我们多赋几个值就可以保证正确性了。

所以这道题转化为将一个字符串当成多项式运算,我想大家学栈专题的时候都做过类似的题吧。面对这类题,我们只需要用两个栈,一个储存数字,一个储存运算符,再根据运算符的优先级进行运算

还是建议不要用gets(),还是讨厌的换行问题,在洛谷上(Linux系统)判断换行符应该用 '\r' ,在vijos(Windows系统)上应该用'\n',为了保险,我们都判断就可以了。

最让我无语的是洛谷的数据居然有括号不匹配的,我当时就震惊了,但是遇到我们直接跳过就可以了。

代码:

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<string>
#include<cctype>
using namespace std;
const int MOD=100000007;
#define ll long long
int n,top1,top2;
ll stk1[105];
char stk2[105];
int order(char ch){
    switch(ch){//运算符优先级 
        case ')':return 4;
        case '^':return 3;
        case '*':return 2;
        case '+':return 1;
        case '-':return 1;
        case '(':return 0;
    } return -1;
}
ll calc(ll a,char op,ll b){ 
    switch(op){
        case '+':return (a+b+MOD)%MOD;
        case '-':return (a-b+MOD)%MOD;
        case '*':return a*b%MOD;
    } ll ret=1;
    while(b--) ret=ret*a%MOD;
    return (ret+MOD)%MOD;
}
bool get_line(char* str){//输入+处理字符串 
    int pos=0,lc=0;
    bool Err=false; 
    char ch=getchar();
    while(!isdigit(ch)&&ch!='a'&&ch!='+'&&ch!='-'&&ch!='*'&&ch!='^'&&ch!='('&&ch!=')') ch=getchar();
    while(ch!='\n'&&ch!='\r'){
        if(ch!=' '){
            if(ch=='(') lc++;
            if(ch==')') lc--;
            if(lc<0) Err=true;
            if(ch=='a'&&pos>0&&isdigit(str[pos-1])) str[pos++]='*';
            str[pos++]=ch;
        } ch=getchar();
    } str[pos]='\0';
    if(lc||Err) return true;
    return false;	
}
ll calc_str(char* s,int a_v){//计算字符串 
    ll a,b;
    char op;
    top1=top2=0;
    for(int i=0;s[i]!='\0';i++){
        if(s[i]=='(') stk2[++top2]=s[i];
        else if(isdigit(s[i])){
            int v=s[i++]-'0';
            while(isdigit(s[i])) v=v*10+s[i++]-'0';
            stk1[++top1]=v;i--;
        }
        else if(s[i]=='a') stk1[++top1]=a_v;
        else if(s[i]=='^'){
            int v=s[++i]-'0';i++;
            while(isdigit(s[i])) v=v*10+s[i++]-'0';
            i--;
            a=stk1[top1--],b=v;
            stk1[++top1]=calc(a,'^',b);
        }
        else if(s[i]==')'){
            while(stk2[top2]!='('){
                b=stk1[top1--],a=stk1[top1--],op=stk2[top2--];
                stk1[++top1]=calc(a,op,b);
            }top2--;
        }
        else{
            while(top2&&order(s[i])<=order(stk2[top2])){
                b=stk1[top1--],a=stk1[top1--],op=stk2[top2--];
                stk1[++top1]=calc(a,op,b);
            }stk2[++top2]=s[i];
        }
    }
    while(top2){
        b=stk1[top1--],op=stk2[top2--],a=stk1[top1--];
        stk1[++top1]=calc(a,op,b);
    }
    return stk1[top1];
}
int main(){
//	freopen("in.in","r",stdin);
    char s[150],s1[150];
    ll ans[32];
    get_line(s);	
    scanf("%d",&n);//get_line(s1);
    for(int i=0;i<=10;i++) ans[i]=calc_str(s,i);
    for(int i=0;i<n;i++){
        if(get_line(s1)) continue;
        for(int x=0;x<=10;x++){
            if(calc_str(s1,x)!=ans[x]) goto Next;
        } putchar('A'+i);
        Next:{}
    }
    return 0;
}

 

展开阅读全文

Git 实用技巧

11-24
这几年越来越多的开发团队使用了Git,掌握Git的使用已经越来越重要,已经是一个开发者必备的一项技能;但很多人在刚开始学习Git的时候会遇到很多疑问,比如之前使用过SVN的开发者想不通Git提交代码为什么需要先commit然后再去push,而不是一条命令一次性搞定; 更多的开发者对Git已经入门,不过在遇到一些代码冲突、需要恢复Git代码时候就不知所措,这个时候哪些对 Git掌握得比较好的少数人,就像团队中的神一样,在队友遇到 Git 相关的问题的时候用各种流利的操作来帮助队友于水火。 我去年刚加入新团队,发现一些同事对Git的常规操作没太大问题,但对Git的理解还是比较生疏,比如说分支和分支之间的关联关系、合并代码时候的冲突解决、提交代码前未拉取新代码导致冲突问题的处理等,我在协助处理这些问题的时候也记录各种问题的解决办法,希望整理后通过教程帮助到更多对Git操作进阶的开发者。 本期教程学习方法分为“掌握基础——稳步进阶——熟悉协作”三个层次。从掌握基础的 Git的推送和拉取开始,以案例进行演示,分析每一个步骤的操作方式和原理,从理解Git 工具的操作到学会代码存储结构、演示不同场景下Git遇到问题的不同处理方案。循序渐进让同学们掌握Git工具在团队协作中的整体协作流程。 在教程中会通过大量案例进行分析,案例会模拟在工作中遇到的问题,从最基础的代码提交和拉取、代码冲突解决、代码仓库的数据维护、Git服务端搭建等。为了让同学们容易理解,对Git简单易懂,文章中详细记录了详细的操作步骤,提供大量演示截图和解析。在教程的最后部分,会从提升团队整体效率的角度对Git工具进行讲解,包括规范操作、Gitlab的搭建、钩子事件的应用等。 为了让同学们可以利用碎片化时间来灵活学习,在教程文章中大程度降低了上下文的依赖,让大家可以在工作之余进行学习与实战,并同时掌握里面涉及的Git不常见操作的相关知识,理解Git工具在工作遇到的问题解决思路和方法,相信一定会对大家的前端技能进阶大有帮助。
©️2020 CSDN 皮肤主题: 编程工作室 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值