描述
一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果)。
分析
由于一次只能跳1阶或2阶,可以按最后一次跳的阶数分为两种情况:
1.最后一次固定跳1阶:这种情况随前n-1次的跳法而确定,故总组合数与前n-1次的组合数一致;
2.最后一次固定跳2阶(n>2):同理,这种情况总组合数与前n-1次的组合数一致。
不难发现,该问题为斐波那契数列问题,设台阶为n阶,组合数为a(n),则有对于所有自然数n:
a(n) = a(n-1)+a(n-2), (n>2);
a(n) = n,(0<n<=2);
递归法
可通过递归求解,Java代码如下:
int fibonacci(int n) {
//对于负数此题没有意义
if (n < 0) return -1;
if (n <= 2) return n;
return fibonacci(n - 1) + fibonacci(n - 2);
}
循环法
递归的本质是隐式维护一个栈,调用方法时会不断压栈帧,当n过大时计算效率会陡然下降,可以通过从n=1开始循环累加的方式代替递归,提高运算效率。
代码如下:
int fibonacciCirc(int n) {
if (n < 0) return -1;
if (n <= 2) return n;
int a = 1, b = 2, sum = 0;
// 从n=3开始 循环累加到第n阶
for (int i = 3; i <= n; i++) {
sum = a + b;
a = b;
b = sum;
}
return sum;
}
总结
斐波那契数列是初等数学中十分常见的数列问题,通过程序算法可以很方便的进行计算,是很简单的算法题。