【手撕OJ题】——LeetCode算法入门(189. 轮转数组)

这篇博客探讨了如何解决数组元素向右轮转的问题,提供了三种方法:基本的逐位旋转,使用额外空间的交换法,以及空间复杂度为O(1)的三步旋转法。三步旋转法被认为是最佳解决方案,它通过两次反转实现原地旋转,时间复杂度为O(N)。
摘要由CSDN通过智能技术生成

题目:轮转数组

给你一个数组,将数组中的元素向右轮转 k 个位置,其中 k 是非负数。

示例1
输入: nums = [1,2,3,4,5,6,7], k = 3
输出: [5,6,7,1,2,3,4]
解释:
向右轮转 1 步: [7,1,2,3,4,5,6]
向右轮转 2 步: [6,7,1,2,3,4,5]
向右轮转 3 步: [5,6,7,1,2,3,4]

这道题的底部有一个进阶要求:

进阶:

  • 尽可能想出更多的解决方案,至少有 三种 不同的方法可以解决这个问题。
  • 你可以使用空间复杂度为 O(1) 的 原地 算法解决这个问题吗

方法①-基本方法

直接旋转,把最后一位数字移动到数组的第一位,然后将第二位开始的每一位往前移动一位。
在这里插入图片描述

void rotate(int* nums, int numsSize, int k) {
    k %= numsSize;
    for (int i = 0; i < k; i++)
    {
        int tmp = nums[numsSize - 1];
        for (int j = numsSize - 1; j >0; j--)
        {
            nums[j] = nums[j-1];
        }
        nums[0] = tmp;
    }
    return;
}

这种算法的时间复杂度是 O(k*N),其中k是常数,可以省略。
若没有明确说明k,则最坏情况为 O(N2),即k%N == N-1
空间复杂度是O(1)。
在这里插入图片描述
但是,由于在跑LeetCode其中非常长的测试用例时,还是会因为超时而失败。
在这里插入图片描述


方法②-以空间换时间

即额外开辟一个数组,存储需要旋转的几个数字,然后将它们之前的数据存储到该数组的后半部分。最后再把新数组复制回原来的数组中
在这里插入图片描述

void rotate(int* nums, int numsSize, int k) {
    k %= numsSize;
    int* num1 = (int*)malloc(sizeof(int) * numsSize);
    int h = 0;
    for (int i = numsSize - k; i < numsSize; i++)
    {
        num1[h++] = nums[i];
    }
    for (int i = 0; i < numsSize - k; i++)
    {
        num1[i + k] = nums[i];
    }
    memcpy(nums, num1, sizeof(int) * numsSize);
    return;
}

这个算法的时间复杂度是O(N),空间复杂度是O(N)
在这里插入图片描述
不过,这个算法并不符合原地的要求。


方法③-三步旋转法(最优解)

在这里插入图片描述

void reverse(int* nums, int left ,int right)
{
    while(left<right)
    {
        int tmp=nums[left];
        nums[left]=nums[right];
        nums[right]=tmp;

        left++;
        right--;
    }
}

void rotate(int* nums, int numsSize, int k)
{
    if(k>=numsSize)
    {
        k%=numsSize;
    }
    reverse(nums, 0, numsSize-k-1);
    reverse(nums, numsSize-k, numsSize-1);
    reverse(nums, 0, numsSize-1);
}

这个算法的时间复杂度是O(N),空间复杂度是O(1),符合题目进阶要求。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值