题目:轮转数组
给你一个数组,将数组中的元素向右轮转 k 个位置,其中 k 是非负数。
示例1:
输入: nums = [1,2,3,4,5,6,7], k = 3
输出: [5,6,7,1,2,3,4]
解释:
向右轮转 1 步: [7,1,2,3,4,5,6]
向右轮转 2 步: [6,7,1,2,3,4,5]
向右轮转 3 步: [5,6,7,1,2,3,4]
这道题的底部有一个进阶要求:
进阶:
- 尽可能想出更多的解决方案,至少有
三种
不同的方法可以解决这个问题。- 你可以使用空间复杂度为
O(1)
的 原地 算法解决这个问题吗
方法①-基本方法
直接旋转,把最后一位数字移动到数组的第一位,然后将第二位开始的每一位往前移动一位。
void rotate(int* nums, int numsSize, int k) {
k %= numsSize;
for (int i = 0; i < k; i++)
{
int tmp = nums[numsSize - 1];
for (int j = numsSize - 1; j >0; j--)
{
nums[j] = nums[j-1];
}
nums[0] = tmp;
}
return;
}
这种算法的时间复杂度是 O(k*N),其中k是常数,可以省略。
若没有明确说明k,则最坏情况为 O(N2),即k%N == N-1
空间复杂度是O(1)。
但是,由于在跑LeetCode其中非常长的测试用例时,还是会因为超时而失败。
方法②-以空间换时间
即额外开辟一个数组,存储需要旋转的几个数字,然后将它们之前的数据存储到该数组的后半部分。最后再把新数组复制回原来的数组中
void rotate(int* nums, int numsSize, int k) {
k %= numsSize;
int* num1 = (int*)malloc(sizeof(int) * numsSize);
int h = 0;
for (int i = numsSize - k; i < numsSize; i++)
{
num1[h++] = nums[i];
}
for (int i = 0; i < numsSize - k; i++)
{
num1[i + k] = nums[i];
}
memcpy(nums, num1, sizeof(int) * numsSize);
return;
}
这个算法的时间复杂度是O(N),空间复杂度是O(N)
不过,这个算法并不符合原地
的要求。
方法③-三步旋转法(最优解)
void reverse(int* nums, int left ,int right)
{
while(left<right)
{
int tmp=nums[left];
nums[left]=nums[right];
nums[right]=tmp;
left++;
right--;
}
}
void rotate(int* nums, int numsSize, int k)
{
if(k>=numsSize)
{
k%=numsSize;
}
reverse(nums, 0, numsSize-k-1);
reverse(nums, numsSize-k, numsSize-1);
reverse(nums, 0, numsSize-1);
}
这个算法的时间复杂度是O(N),空间复杂度是O(1),符合题目进阶要求。