从“无效提问”到精准指令:测试工程师的AI高效沟通指南

什么是提示词工程

提示词工程指的是在和AI工具互动时,通过优化输入指令(比如提问方式、关键词选择、上下文补充等)来更高效地获取所需结果。它有点像“和AI沟通的翻译技巧”,核心是理解AI的逻辑习惯,用更精准的语言引导它输出有价值的内容。

对软件测试工程师来说,掌握这个技能能提升日常效率,尤其是在使用AI辅助工具时。举几个具体例子:

1. 快速生成测试场景

比如测试登录功能时,直接问AI“给我一些测试用例”可能得到泛泛的回答。但改用提示词:“请列出手机号登录功能的10个边界条件测试点,重点覆盖国际号码格式、超长输入、特殊字符等情况”,AI输出的内容会更有针对性。

2. 自动化脚本调试

当脚本报错时,把错误日志+代码片段一起丢给AI,加上提示:“请用Python+Selenium定位问题,先解释报错原因,再给出两种修改方案,用代码示例说明”。这比单纯问“哪里错了”更容易获得有效回复。

3. 生成测试数据

需要批量构造测试数据时,可以设计提示词:“生成50条符合欧盟GDPR要求的用户注册信息,包含姓名、邮箱、地址,其中20%的数据故意包含格式错误”。这比手动编造数据节省大量时间。

4. 分析测试结果

将自动化测试报告发给AI时,提示:“总结失败用例的共同特征,按优先级排序问题,并用表格列出可能的原因”。能快速提炼关键问题,减少人工筛查时间。

关键点在于:把AI当“实习生”用,通过明确任务背景、输出格式、重点方向,减少无效沟通。实际工作中,测试工程师积累的用例设计经验反而能帮你设计出更好的提示词——毕竟你更清楚测试目标在哪里。

原则与技巧

1. 先说目标,再给细节

❌错误示范:

“生成测试数据。”(目标模糊,AI可能随机生成无效数据)

✔正确逻辑:

“我需要测试用户年龄输入框的边界值,请生成10组测试数据,要求:

  • 包含有效值(0-120岁)、最小值(0)、最大值(120)

  • 包含无效值(负数、非数字字符、超长数字如12345)

  • 用表格展示,一列为输入值,一列为预期结果”

原则:先定义测试目的(边界值测试),再明确数据规则和输出格式。

2. 给AI一个“角色”

❌普通提问:

“分析这段接口返回的JSON哪里可能有问题。”

✔角色化改进:

“假设你是资深测试开发工程师,请检查以下登录接口的响应:

  • 对比状态码、响应时间是否符合需求文档(标准:200状态码,响应<500ms)

  • 检查token字段是否存在且长度≥32字符

  • 列出3个潜在的安全风险点”

原则:赋予AI特定角色(如测试专家),限制其思考角度,避免发散。

3. 拆解复杂任务

❌低效提问:

“帮我想一个自动化测试框架的设计方案。”(范围过大,回答可能空洞)

✔分步引导:

“第一步:用Python+pytest设计登录模块的测试框架,需包含——

  • 数据驱动(从Excel读取测试用例)

  • 失败截图功能

  • 自定义日志记录格式

第二步:针对以上框架,给出一段示例代码和目录结构说明”

原则:将大任务拆解为可执行步骤,降低AI的理解负担。

4. 用对比排除歧义

❌模糊需求:

“生成性能测试脚本。”(AI可能用JMeter或Locust不确定)

✔精准定义:

“我需要用Locust(而非JMeter)编写一个HTTP接口压测脚本,要求:

  • 模拟100用户阶梯式递增(每10秒+20用户)

  • 统计登录接口的90%响应时间

  • 当错误率>5%时立即停止测试

  • 给出代码并注释关键参数含义”

原则:通过否定(“不要什么”)和肯定(“要什么”)明确边界。

5. 提供上下文线索

❌孤立提问:

“这个报错怎么解决?”(AI缺少背景信息)

✔关联上下文:

“我正在用Appium测试安卓APP的首页加载速度,环境是Python+ pytest,以下是报错日志和对应代码片段:

[粘贴代码/日志]

请:

  1. 解释‘ElementNotVisibleException’的可能原因

  2. 根据我的代码给出两种修复方案

  3. 建议如何增加重试机制防止偶发失败”

原则:像和同事沟通一样,同步必要背景信息。

实际技巧总结:

测试工程师的优势:你比AI更懂测试场景,用业务术语替代抽象描述(如直接说“等价类划分”而非“多种情况测试”)。

复用经验:将常用的测试方法论(如边界值分析、异常流设计)融入提示词,例如:“按ISTQB标准设计支付功能的正向/逆向用例”。

迭代思维:若AI第一次回答不理想,用“排除法”追问:“排除网络问题,从数据加密角度重新分析”。

最终记住:好的提示词=明确指令+业务理解+AI交互习惯,这和设计测试用例的逻辑本质相通——越清晰的输入,越高效的输出


推荐阅读

DeepSeek实践指导手册、人工智能在软件测试中的应用、我们是如何测试人工智能的?

Deepseek52条喂饭指令

在本地部署属于自己的 DeepSeek 模型,搭建AI 应用平台

DeepSeek 大模型与智能体公开课,带你从零开始,掌握 AI 的核心技术,开启智能未来!

深度解析:如何通过DeepSeek优化软件测试开发工作,提升效率与准确度

DeepSeek、文心一言、Kimi、豆包、可灵……谁才是你的最佳AI助手?

从零到一:如何构建一个智能化测试平台?

DeepSeek-R1+ Ollama 本地部署全攻略

DeepSeek与Playwright结合:利用AI提升自动化测试脚本生成与覆盖率优化

DeepSeek大模型6大部署模式解析与探索测试开发技术赋能点

爱测智能化服务平台

测开人必看!0代码+AI驱动,测试效率飙升300% ——霍格沃兹测试开发学社‌重磅上新‌「爱测智能化服务平台」限时开放体验!

一码难求的Manus:智能体技术如何重构生产力?测试领域又有哪些新机遇?

开源工具

AppCrawler 开源版
https://github.com/seveniruby/AppCrawler

Hogwarts-Browser-Use 开源版
指导安装贴:hogwarts-browser-use - 开源项目 - 爱测-测试人社区


专业版 (7天免费试用)

自动遍历测试框架 AppCrawler 专业版
通用数据驱动测试框架 hogwarts-ddt 专业版
测试智能体框架 hogwarts-agent 专业版

学社提供的资源

教育官网:霍格沃兹测试开发学社
科技官网:测吧(北京)科技有限公司
火焰杯就业选拔赛:火焰杯就业选拔赛 - 霍格沃兹测试开发学社
火焰杯职业竞赛:火焰杯职业竞赛 - 霍格沃兹测试开发学社
学习路线图:霍格沃兹测试开发学社
公益社区论坛:爱测-测试人社区 - 软件测试开发爱好者的交流社区,交流范围涵盖软件测试、自动化测试、UI测试、接口测试、性能测试、安全测试、测试开发、测试平台、开源测试、测试教程、测试面试题、appium、selenium、jmeter、jenkins
公众号:霍格沃兹测试学院
视频号:霍格沃兹软件测试
ChatGPT体验地址:霍格沃兹测试开发学社

Docker

Docker cp命令详解:在Docker容器和主机之间复制文件/文件夹

Docker pull 命令详解:从镜像仓库获取镜像

深入理解 Docker Run 命令:从入门到精通

Docker Exec 命令详解与实践指南

Docker Kill/Pause/Unpause命令详细使用指南

Docker Logs命令详解

Selenium

多任务一次搞定!selenium自动化复用浏览器技巧大揭秘

如何使用Selenium处理隐藏元素

软件测试/测试开发/全日制|selenium NoSuchDriverException问题解决

软件测试/人工智能|解决Selenium中的异常问题:“error sending request for url”

Python

使用Python爬取豆瓣电影影评:从数据收集到情感分析

如何使用 Python 实现十进制转二进制的程序

Python教程:如何获取颜色的RGB值

Python处理日期的利器—日期转换指南

Python字符串的编码与解码

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值