固液相变问题的本质
固液相变问题,即有融化或凝固峰面运动的传热问题,为纪念德国科学家J. Stefen研究极地冰层的厚度问题又被称为斯蒂芬问题。从1860年Franz Neumann研究半无限大物体的相变问题至今,人们对固液相变问题的研究已经有一百多年的历史。
相变导热问题的数值解法可以分为两大类。一类称为界面跟踪法或强数值解法,另一类称为固定网格法或弱数值解法。
界面跟踪法包括固定步长法、变空间步长法、变时间步长法、自变量变换法、贴体坐标法和等温面移动法。界面跟踪法在每一个时间步长都要确定固液两相界面的位置和温度分布,但是通常固液两相界面的形状是不规则的,而且其位置不论在空间还是时间上都是未知的,因此在进行离散化数值求解是需要用特殊的插值方法或采用坐标变换把不规则两相界面变成固定边界。采用坐标变换的方法,虽然可以把不规则的移动界面变成一个形状简单的固定界面,但使得原始方程复杂化,这类解法适用于一维问题的求解,但扩展到二维和三维情况时,方程形式将变得极为复杂,而且对存在非单调、多个界面的情形也是不适用的。
固定网格法或弱数值解法不需要跟踪固液两相界面的位置,把包含不同相态的求解区域作为整体求解,因而具有很大的灵活性,很容易推广到多维、多界面情况。这类解法有显热熔法和焓法。
显热容法把物质的相变潜热看作是在一个很小的温度范围内有一个很大的显热容,从而把分区描述的相变问题转变为单一区域上的非线性导热问题,达到整体求解的目的。显热容法可以直接利用现有通用程序计算。
焓法是将热焓和温度一起作为待求函数在整个区域包括液相、固相和两相界面建立一个统一的能量方程,利用数值方法求出热焓分布,然后确定两相界面。焓法没有显热容法的缺点,具有方法简单,灵活方便,容易扩展到多维情况等优点,能够求解具有复杂边界条件以及非单调、多