题目描述
输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历的结果。如果是则输出Yes,否则输出No。假设输入的数组的任意两个数字都互不相同。
题目分析:
二叉搜索树相对于二叉树来说,必须满足根节点的所有左子树元素都小于根节点,所有右子树节点都大于跟节点,而对于后序遍历来说,二叉树后序遍历最后一个元素为根节点,所以我们可以采用以下思路:来进行求解遍历数组,找到根节点的左子树和右子树,即找到分界点,因为左子树所有元素都小于根节点,所以通过遍历可以找到第一个不满足条件的值,这也就是右子树的第一个节点;找到分界点后,继续判断右子树的所有节点是否大于根节点,判断后继续进行递归。
递归实现:
可以不用看下面这段话,如果对于j的初始取值有疑问,可以看下面的解释。
在这里一定要注意j的出示取值,j = end,而不是j = start,如果是start测试case只有部分通过,接下来进行分析:例如对于 int[] sequence = {4,6,7,5};在第一次进行执行时,分界点为i = 1,左树{4,6,7,5}start = 0,end = 0进行递归,返回true,接着右树{4,6,7,5} ,start = 1 , end = 2 ,也就是{6,7}进行递归, 刚开始 j = end 初始化为j = end = 2,而在第一个for循环中,不满足if条件,循环结束,此时j的值没有发生改变,仍然为2,所以在第二个for循环中,循环体只执行一次,也不满足条件,不会返回false,但是,如果是 j = start,那么在第二个循环体中,由于就= 1,循环体执行一次,比较sequence[1]与sequence[2],而sequence[1]<sequence[2],直接返回false。这种情况就是为了避免左树为空,而右树只剩2个元素时,判断第一个元素和第二个元素,也就是根节点进行比较,而且在这里比较的右树和根节点,判断出来肯定是满足右树大于根节点,在第二个for循环中直接返回false。
public boolean VerifySquenceOfBST(int [] sequence) {
if (sequence == null ||sequence.length == 0) {
return false;
}
return judge(sequence, 0, sequence.length - 1);
}
private boolean judge(int[] sequence, int start, int end) {
if (start >= end) {
return true;
}
//后序遍历,数组最后一个元素为根节点。
int j = end;
//找到右子树节点第一个元素的下标i,也判断了左树元素小于根节点元素
for (int i = start; i <= end; i++) {
if (sequence[i] > sequence[end]) {
j = i;
break;
}
}
//判断右子树所有元素大于根节点元素
for (int i = j; i <= end; i++) {
if (sequence[i] < sequence[end])
return false;
}
return judge(sequence, start, j - 1) && judge(sequence, j, end-1);
}