ACM图论专题-走廊泼水节

走廊泼水节

题目大意

给定n个节点的一颗树,你需要将其补全为一个完全图,但是所补得完全图应该满足其最小生成树任然是给定的树,问补全这棵树所需要的边权值之和

解法

利用kruskal算法求解最小生成树的思想
在此过程中,需要记录下每次合并的两个集合的元素的数量
然后再合并的时候累计(cnt[x] * cnt[y]-1) * (val[x][y]+1)即可得到最终的答案
题目要求唯一最小生成树还是原来的树

简要证明如下:
两个完全图,一个为x,一个为y
其大小分别是cnt[x]和cnt[y],这两个图满足上述性质
此时一条边连接图x和y,边权为val[x][y],x和y要构成一个大的完全图,还需要的边的数量就是(cnt[x] * cnt[y]-1),且还要满足当前val[x][y]就是连接两个子图的最优边,其他连接子图的边就必须比其大,这个最少的差值就是1
故有上式

#include <bits/stdc++.h>
using namespace std;
struct node
{
    int u,v,w;
    bool friend operator < (node a,node b)
    {
        return a.w<b.w;
    }
};
node edge[10010];
int fa[10010];
int cnt[10010];
int n,m;
long long ans=0;

void init()
{
    memset(fa,0x0,sizeof(fa));
    memset(cnt,0x0,sizeof(cnt));
    for(int i=1; i<=n; i++)
        fa[i]=i,cnt[i]=1;
    ans=0;
}

int find(int x)
{
    return (x==fa[x])?(x):(fa[x]=find(fa[x]));
}

int main()
{
    int T;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d",&n);
        m=n-1;
        init();
        for(int i=1; i<=m; i++)
            scanf("%d%d%d",&edge[i].u,&edge[i].v,&edge[i].w);

        sort(edge+1,edge+m+1);

        for(int i=1,x,y,z; i<=m; i++)
        {
            x=find(edge[i].u);
            y=find(edge[i].v);
            z=edge[i].w;

            if(x!=y)
            {
                ans+=(long long)(cnt[x]*cnt[y]-1)*(z+1);
                cnt[y]+=cnt[x];
                fa[x]=y;
            }
        }
        printf("%lld\n",ans);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值