题目大意
给定n个节点的一颗树,你需要将其补全为一个完全图,但是所补得完全图应该满足其最小生成树任然是给定的树,问补全这棵树所需要的边权值之和
解法
利用kruskal算法求解最小生成树的思想
在此过程中,需要记录下每次合并的两个集合的元素的数量
然后再合并的时候累计(cnt[x] * cnt[y]-1) * (val[x][y]+1)即可得到最终的答案
题目要求唯一最小生成树还是原来的树
简要证明如下:
两个完全图,一个为x,一个为y
其大小分别是cnt[x]和cnt[y],这两个图满足上述性质
此时一条边连接图x和y,边权为val[x][y],x和y要构成一个大的完全图,还需要的边的数量就是(cnt[x] * cnt[y]-1),且还要满足当前val[x][y]就是连接两个子图的最优边,其他连接子图的边就必须比其大,这个最少的差值就是1
故有上式
#include <bits/stdc++.h>
using namespace std;
struct node
{
int u,v,w;
bool friend operator < (node a,node b)
{
return a.w<b.w;
}
};
node edge[10010];
int fa[10010];
int cnt[10010];
int n,m;
long long ans=0;
void init()
{
memset(fa,0x0,sizeof(fa));
memset(cnt,0x0,sizeof(cnt));
for(int i=1; i<=n; i++)
fa[i]=i,cnt[i]=1;
ans=0;
}
int find(int x)
{
return (x==fa[x])?(x):(fa[x]=find(fa[x]));
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
m=n-1;
init();
for(int i=1; i<=m; i++)
scanf("%d%d%d",&edge[i].u,&edge[i].v,&edge[i].w);
sort(edge+1,edge+m+1);
for(int i=1,x,y,z; i<=m; i++)
{
x=find(edge[i].u);
y=find(edge[i].v);
z=edge[i].w;
if(x!=y)
{
ans+=(long long)(cnt[x]*cnt[y]-1)*(z+1);
cnt[y]+=cnt[x];
fa[x]=y;
}
}
printf("%lld\n",ans);
}
return 0;
}