二叉树是指每个结点最多有两个子树的树结构。
完全二叉树是若设二叉树的高度为h,除第 h 层外,其它各层 (1~h-1) 的结点数都达到最大个数,第h层有叶子结点,并且叶子结点都是从左到右依次排布的。
满二叉树是除了叶子结点外其他所有结点的度都为2,也就是说都有两个子树,若一颗满二叉树的高度为k,则它有2的k-1次方个结点
平衡二叉树:又被称为AVL树(区别于AVL算法),它是一棵二叉排序树,且具有以下性质:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。
#include <cstdio>
#include <malloc.h>
#include <iostream>
using namespace std;
typedef struct bitnode {
char data;
struct bitnode *lchild,*rchild;
}Bitnode,*Bitree;
Bitree Initate(){///初始化二叉树
Bitnode *bt;//制造一个空结点
bt = (Bitnode*)malloc(sizeof(Bitnode));
if(bt==NULL) return NULL;
bt->lchild = NULL;
bt->rchild = NULL;
return bt;//返回
}
int countleaf(Bitree bt){
if(bt==NULL) return 0;
if(bt->lchild==NULL&&bt->rchild==NULL) return 1;
return countleaf(bt->lchild)+countleaf(bt->rchild);
}
Bitree search1(Bitree bt,char x){///查找二叉树结点
Bitree p=NULL;
if(bt){
if(bt->data==x) return bt;
if(bt->lchild) p=search1(bt->lchild,x);
if(p) return p;
if(bt->rchild) p=search1(bt->rchild,x);
if(p) return p;
}
return NULL;
}
Bitree Greate(char x,Bitree lbt,Bitree rbt){///建立二叉树
Bitree p;
if((p=(Bitnode *)malloc(sizeof(Bitnode)))==NULL)
return NULL;
p->data=x;
p->lchild=lbt;
p->rchild=rbt;
return p;
}
Bitree InsertL(Bitree bt,char x,Bitree parent){///插入左子树
Bitree p;
if((p=(Bitnode *)malloc(sizeof(Bitnode)))==NULL) return NULL;
p->data=x;
p->lchild=NULL;
p->rchild=NULL;
if(parent->lchild==NULL) parent->lchild=p;
else{
p->lchild=parent->lchild;
parent->lchild=p;
}
return bt;
}
Bitree InsertR(Bitree bt,char x,Bitree parent){///插入右子树
Bitree p;
if((p=(Bitnode *)malloc(sizeof(Bitnode)))==NULL) return NULL;
p->data=x;
p->lchild=NULL;
p->rchild=NULL;
if(parent->rchild==NULL) parent->rchild=p;
else{
p->rchild=parent->rchild;
parent->rchild=p;
}
return bt;
}
Bitree DeleteL(Bitree bt,Bitree parent){///删除左子树
Bitree p;
p=parent->lchild;
parent->lchild=NULL;
free(p);
return bt;
}
Bitree DeleteR(Bitree bt,Bitree parent){///删除右子树
Bitree p;
p=parent->rchild;
parent->rchild=NULL;
free(p);
return bt;
}
void preOrder(Bitree bt){///先序遍历
if(bt==NULL) return;
printf("%c",bt->data);
preOrder(bt->lchild);
preOrder(bt->rchild);
}
void InOrder(Bitree bt){///中序遍历
if(bt==NULL) return;
InOrder(bt->lchild);
printf("%c",bt->data);
InOrder(bt->rchild);
}
void PostOrder(Bitree bt){///后序遍历
if(bt==NULL) return;
PostOrder(bt->lchild);
PostOrder(bt->rchild);
printf("%c",bt->data);
}
void levelorder(Bitree bt){///层次遍历
Bitnode *que[36];
int head,tail;
if(bt==NULL) return;
head=-1;
tail=0;
que[tail]=bt;
while(head!=tail){
head++;
printf("%c",que[head]->data);
if(que[head]->lchild!=NULL){
tail++;
que[tail]=que[head]->lchild;
}
if(que[head]->rchild!=NULL){
tail++;
que[tail]=que[head]->rchild;
}
}
}
void menu(){///主菜单
printf("--------二叉树的基本操作-------\n");
printf("\t1.初始化二叉树\n");
printf("\t2.建立二叉树\n");
printf("\t3.插入左子树\n");
printf("\t4.插入右子树\n");
printf("\t5.删除左子树\n");
printf("\t6.删除右子树\n");
printf("\t7.先序遍历\n");
printf("\t8.中序遍历\n");
printf("\t9.后序遍历\n");
printf("\t10.层次遍历\n");
printf("\t11.程序结束\n");
printf("-------------------------------\n");
}
int main(){
while(1){
menu();
int n;
Bitree bt;
scanf("%d",&n);
if(n>11) break;
switch(n){
case 1:bt=Initate();
break;
case 2:{
char ch;
cin>>ch;
///getchar();
Bitree p;
p=Greate(ch,NULL,NULL);
if(p!=NULL){
bt->lchild=p;
puts("创建成功");
}
break;
}
case 3:{
char ch,x;
Bitree p;
cin>>ch>>x;
p=search1(bt,x);
InsertL(bt,ch,p);
else puts("插入左子树失败");
break;
}
case 4:{
char ch,x;
Bitree p;
cin>>ch>>x;
p=search1(bt,x);
InsertR(bt,ch,p);
/// else puts("插入右子树失败");
break;
}
case 5:{
char x;
Bitree p;
cin>>x;
p=search1(bt,x);
DeleteL(bt,p->lchild);
break;
}
case 6:{
char x;
Bitree p;
cin>>x;
p=search1(bt,x);
DeleteR(bt,p->rchild);
break;
}
case 7:preOrder(bt->lchild);
puts("");
break;
case 8:InOrder(bt);
puts("");
break;
case 9:PostOrder(bt);
puts("");
break;
case 10:levelorder(bt);
puts("");
break;
case 11:{
int ant;
ant=countleaf(bt);
printf("%d\n",ant);
break;
}
default:break;
}
puts("");
}
}