#include <iostream>
#include <string>
#include <map>
using namespace std;
const int maxn = 2010; //总人数
const int INF = 1000000000; //无穷大
map<int, string> intTostring; //编号 -> 姓名
map<string, int> stringToint; //姓名 -> 编号
map<string, int> Gang; //head -> 人数
int G[maxn][maxn] = {0}, weight[maxn] = {0}; //邻接矩阵G、点权weight
int n, k, numPerson = 0; //边数n,下限k,总人数numPerson,初始为0
bool vis[maxn] = {false}; //标记是否被访问
//DFS函数访问单个连通块,nowVisit为当前访问的编号
//head为头目,numMember为成员编号,totalValue为连通块的总边权
void DFS(int nowVisit, int &head, int &numMember, int &totalValue)
{
numMember++; //成员人数加1
vis[nowVisit] = true; //标记nowVisit已访问
if(weight[nowVisit] > weight[head])
{
head = nowVisit; //当前访问结点的点权大于头目的点权,则更新头目
}
for(int i = 0; i < numPerson; i++) //枚举所有人
{
if(G[nowVisit][i] > 0) //如果从nowVisit能够到达i
{
totalValue += G[nowVisit][i]; //连通块的总边权增加当前边权
G[nowVisit][i] = G[i][nowVisit] = 0; //删除当前边权所在的边,防止回头,重复增加当前边权
if(vis[i] == false) //如果i未被访问,则递归访问i,该步重要,多理解
{
DFS(i, head, numMember, totalValue);
}
}
}
}
//DFSTrave函数遍历整个图,获取每个连通块的信息
void DFSTrave()
{
for(int i = 0; i < numPerson; i++) //枚举所有人
{
if(vis[i] == false) //如果i未被访问
{
int head = i, numMember = 0, totalValue = 0; //头目,成员数,总边权初始化,假设头目就是i
DFS(i, head, numMember, totalValue); //遍历i所在的连通块,该语句重点
if(numMember > 2 && totalValue > k) //当前连通块遍历完后,成员数大于2且边总权大于k
{
Gang[intTostring[head]] = numMember; //head人数为numMember
} //head为数字,先将其转换成姓名,在转换成该头目下的人数
}
}
}
//change函数返回 姓名str 对应的 编号
int change(string str)
{
if(stringToint.find(str) != stringToint.end()) //如果str已经出现过
{
return stringToint[str]; //返回编号
}
else{
stringToint[str] = numPerson; //str的编号为numPerson
intTostring[numPerson] = str; //numPerson对应str
return numPerson++; //总人数加1,注意此处是先返回在递增
}
}
int main()
{
int w; //边权
string str1, str2;
cin >> n >> k; //打电话总数n,阈值k
for(int i = 0; i < n; i++) //建图,循环输入
{
cin >> str1 >> str2 >> w; //输入边的两个端点和边权
int id1 = change(str1); //将str字符串转换为编号id1
int id2 = change(str2); //将str字符串转换为编号id2
weight[id1] += w; //id1的点权增加w
weight[id2] += w; //id2的点权增加w
G[id1][id2] += w; //边id1 -> id2的边权增加w
G[id2][id1] += w; //边id2 -> id1的边权增加w
}
DFSTrave(); //遍历整个图的所有连通块,获取Gang的信息
cout << Gang.size() << endl; //输出Gang的个数
map<string, int>::iterator it; //定义迭代器it
for(it = Gang.begin(); it != Gang.end(); it++) //遍历所有Gang
{
cout << it -> first << " " << it -> second << endl; //输出信息
}
return 0;
}
【PAT A1034】Head of a Gang(深度优先搜索DFS)
于 2023-04-25 17:55:46 首次发布
该程序通过深度优先搜索(DFS)遍历图,寻找边权大于k且成员数大于2的连通块。首先建立一个图,然后遍历每个节点,用DFS找到每个连通块,更新头目和连通块信息。最后输出满足条件的连通块数量及其头目和人数。
摘要由CSDN通过智能技术生成