【第四届蓝桥杯】马虎的算式

本文探讨了一种有趣的数学现象:存在一些特殊的五位数abcde,由1至9的不同数字组成,满足ab*cde等于adb*ce的奇特性质。文章提供了两种C++实现方式来找出所有符合条件的数,并给出了最终的答案——142种不同的组合。
摘要由CSDN通过智能技术生成
题目: 马虎的算式

    小明是个急性子,上小学的时候经常把老师写在黑板上的题目抄错了。
    有一次,老师出的题目是:36 x 495 = ?
    他却给抄成了:396 x 45 = ?
    但结果却很戏剧性,他的答案竟然是对的!!
    因为 36 * 495 = 396 * 45 = 17820
    类似这样的巧合情况可能还有很多,比如:27 * 594 = 297 * 54
    假设 a b c d e 代表1~9不同的5个数字(注意是各不相同的数字,且不含0)
    能满足形如: ab * cde = adb * ce 这样的算式一共有多少种呢?
请你利用计算机的优势寻找所有的可能,并回答不同算式的种类数。
满足乘法交换律的算式计为不同的种类,所以答案肯定是个偶数。
答案直接通过浏览器提交。

注意:只提交一个表示最终统计种类数的数字,不要提交解答过程或其它多余的内容。


答案:142


C++代码一:

#include <iostream>
using namespace std;

int main() {
	int a, b, c, d, e, sum = 0;
	for(a = 1; a < 10; a++)
	for(b =1; b < 10; b++)
	if(a != b)
	for(c = 1; c < 10; c++)
	if(c != a && c != b)
	for(d = 1; d < 10; d++)
	if(d != a && d != b && d != c)
	for(e = 1; e < 10; e++)
	if(e != a && e != b && e != c && e != d)
	if((a*10+b)*(c*100+d*10+e) == (a*100+d*10+b)*(c*10+e))
		sum++;//满足 ab * cde = adb * ce
	cout << sum;

	return 0;
} 

C++代码二:

#include <iostream>
using namespace std;

bool isOk(int *s) {
	int flag[10] = {0};
	for(int i = 0; i < 5; i++) {
		if(s[i] == 0 || flag[s[i]])
			return false;
		flag[s[i]] = 1;
	}
	return true;	
}

int main() {
	int i, j, k, sum = 0, v[5] = {0};
	for(i = 11111; i < 100000; i++) {
		for(j = 0, k = 10000; j < 5; j++, k /= 10)
			v[j] = i/k%10;
		if(isOk(v) && (v[0]*10+v[1])*(v[2]*100+v[3]*10+v[4]) 
			== (v[0]*100+v[3]*10+v[1])*(v[2]*10+v[4]))
			sum++;//满足 ab * cde = adb * ce
	}	
	cout << sum;
	return 0;
}

第四届蓝桥杯所有组试题与部分答案

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Homilier

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值