题目: 马虎的算式
小明是个急性子,上小学的时候经常把老师写在黑板上的题目抄错了。
有一次,老师出的题目是:36 x 495 = ?
他却给抄成了:396 x 45 = ?
但结果却很戏剧性,他的答案竟然是对的!!
因为 36 * 495 = 396 * 45 = 17820
类似这样的巧合情况可能还有很多,比如:27 * 594 = 297 * 54
假设 a b c d e 代表1~9不同的5个数字(注意是各不相同的数字,且不含0)
能满足形如: ab * cde = adb * ce 这样的算式一共有多少种呢?
请你利用计算机的优势寻找所有的可能,并回答不同算式的种类数。
满足乘法交换律的算式计为不同的种类,所以答案肯定是个偶数。
答案直接通过浏览器提交。
第四届蓝桥杯所有组试题与部分答案
小明是个急性子,上小学的时候经常把老师写在黑板上的题目抄错了。
有一次,老师出的题目是:36 x 495 = ?
他却给抄成了:396 x 45 = ?
但结果却很戏剧性,他的答案竟然是对的!!
因为 36 * 495 = 396 * 45 = 17820
类似这样的巧合情况可能还有很多,比如:27 * 594 = 297 * 54
假设 a b c d e 代表1~9不同的5个数字(注意是各不相同的数字,且不含0)
能满足形如: ab * cde = adb * ce 这样的算式一共有多少种呢?
请你利用计算机的优势寻找所有的可能,并回答不同算式的种类数。
满足乘法交换律的算式计为不同的种类,所以答案肯定是个偶数。
答案直接通过浏览器提交。
注意:只提交一个表示最终统计种类数的数字,不要提交解答过程或其它多余的内容。
答案:142
C++代码一:
#include <iostream>
using namespace std;
int main() {
int a, b, c, d, e, sum = 0;
for(a = 1; a < 10; a++)
for(b =1; b < 10; b++)
if(a != b)
for(c = 1; c < 10; c++)
if(c != a && c != b)
for(d = 1; d < 10; d++)
if(d != a && d != b && d != c)
for(e = 1; e < 10; e++)
if(e != a && e != b && e != c && e != d)
if((a*10+b)*(c*100+d*10+e) == (a*100+d*10+b)*(c*10+e))
sum++;//满足 ab * cde = adb * ce
cout << sum;
return 0;
}
C++代码二:
#include <iostream>
using namespace std;
bool isOk(int *s) {
int flag[10] = {0};
for(int i = 0; i < 5; i++) {
if(s[i] == 0 || flag[s[i]])
return false;
flag[s[i]] = 1;
}
return true;
}
int main() {
int i, j, k, sum = 0, v[5] = {0};
for(i = 11111; i < 100000; i++) {
for(j = 0, k = 10000; j < 5; j++, k /= 10)
v[j] = i/k%10;
if(isOk(v) && (v[0]*10+v[1])*(v[2]*100+v[3]*10+v[4])
== (v[0]*100+v[3]*10+v[1])*(v[2]*10+v[4]))
sum++;//满足 ab * cde = adb * ce
}
cout << sum;
return 0;
}
第四届蓝桥杯所有组试题与部分答案