【蓝桥杯】运动员分组

运动员分组:
    有N个人参加100米短跑比赛。跑道为8条,因此每组人数最多为8。
    程序的任务是按照尽量使每组的人数相差最少的原则分组。例如:
    N=8时,分成1组即可。
    N=9时,分成2组:一组5人,一组4人。
    N=25时,分4组:7、6、6、6。
    请编程计算分组数字。
    要求从键盘输入一个正整数(1~100之间,不必考虑输入错误的情况),表示参赛的人数。
    程序输出每个组的人数。从大到小顺序输出,每个数字一行。
    比如,用户输入:
25
    程序输出:
7
6
6
6
 

#include <iostream>
using namespace std;

int main() {
	int n, i, j, t, f = 1;
	cin >> n;
	for(i = 1; ; i++) {
		t = n/i;
		if(t > 8 || (t == 8 && n-t*i > 0)) continue;
		for(j = 0; j < i; j++) {
			if(j >= n-t*i) f = 0;
			cout << t+f << endl;
		}
		return 0;
	}
}

 

### 蓝桥杯竞赛中的小球分组问题分析 #### 1. 小球分组的核心概念 在蓝桥杯竞赛中,涉及小球分组的问题通常会围绕如何通过特定条件优化分组策略展开。例如,在引用[2]中小球总数达到 \(10^9\) 的规模,而实际参与称重的小球数量仅为 \(10^6\)【[^2】。这种设定表明我们需要关注的是有限范围内的操作逻辑。 对于此类问题的一个常见思路是利用数学方法减少计算量并提高效率。比如可以通过最大公约数(GCD)来简化某些关系处理过程【[^1】。然而需要注意的是并非所有情况下都存在明显规律可供遵循;有时即使看似能够采用某种高效数据结构如优先队列解决但实际上可能并不适用【[^3】。 #### 2. 解决方案探讨 当面对大规模输入时(如同上述提到的高达十亿级别),直接枚举显然不可行因此需要寻找更优解决方案: - **基于约束条件缩小搜索空间**:如果知道哪些因素会影响最终结果,则可以根据这些已知信息提前排除不可能选项从而降低整体复杂度。 ```python def gcd(a, b): while(b != 0): temp = a % b a = b b = temp return abs(a) # 假设有三颗宝石a,b,c求其精美程度S即它们闪亮度的最大公约数 gem_a,gem_b,gem_c=map(int,input().split()) print(gcd(gcd(gem_a,gem_b),gem_c)) ``` - **运用组合学原理分配资源**:假设每组最多容纳k个小球那么就可以考虑把整个集合划分成若干个大小不超过k子集再分别加以讨论。 尽管理论上完全穷尽所有可能性可能会超出合理的时间界限\(O((p+q)^n)\),但在实际情况里往往能借助启发式规则或者近似估计找到满意解答【[^3】。 #### 3. 总结 综上所述,在应对像蓝桥杯这样具有挑战性的编程比赛里的小球分类议题之时,既要善于发掘隐藏模式又要灵活调整战术以适应不同场景下的需求变化。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Homilier

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值