[BZOJ 2180]最小直径生成树

最小直径生成树


#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define maxn 210
using namespace std;
const int inf = 0x7fffffff / 2;

int n, m;
int f[maxn][maxn], d[maxn][maxn], p[maxn][maxn];

void MST(){
	//Floyd
	for(int k = 1; k <= n; k ++)
	    for(int i = 1; i <= n; i ++)
	        for(int j = 1; j <= n; j ++)
	            if(i != j && j != k && k != i)
	                f[i][j] = min(f[i][j], f[i][k] + f[k][j]);
	                
	//getrank
	for(int i = 1; i <= n; i ++){
		for(int j = 1; j <= n; j ++)
		    p[i][j] = j;
		for(int j = 1; j <= n; j ++)
			for(int k = j + 1; k <= n; k ++)
			    if(f[i][p[i][j]] > f[i][p[i][k]])
			        swap(p[i][j], p[i][k]);
	}
	
	//main
	int ans = inf;
	for(int u = 1; u <= n; u ++){
		for(int v = 1; v <= n; v ++){
			if(d[u][v] != inf){
				ans = min(ans, min(f[u][p[u][n]] << 1, f[v][p[v][n]] << 1));
				int t = n;
				for(int k = n - 1; k >= 1; k --){
					if(f[v][p[u][t]] < f[v][p[u][k]]){
						ans = min(ans, f[u][p[u][k]] + f[v][p[u][t]] + d[u][v]);
						t = k;
					}
				}
			}
		}
	}
	printf("%d\n", ans);
}

int main(){
	scanf("%d%d", &n, &m);
	for(int i = 1; i <= n; i ++)
		for(int j = 1; j <= n; j ++)
			f[i][j] = d[i][j] = inf;
	for(int i = 1; i <= n; i ++)
	    f[i][i] = d[i][i] = 0;
	int u, v, dis;
	for(int i = 1; i <= m; i ++){
		scanf("%d%d%d", &u, &v, &dis);
		f[u][v] = f[v][u] = d[u][v] = d[v][u] = dis;
	}
	MST();
    return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值