超实用|正大杯排版要求及模板

(1)报告正文总标题宋体三号字加粗,单行间距,段前、段后选择自动间距;

(2)报告中一级标题采用黑体小三号字;

(3)二级标题黑体四号字;

(4)其他标题及正文均用宋体小四号字。

(5)摘要、参考文献等名称均用黑体四号字,内容为宋体小四号字。行间距1.25倍,段前间距0.5行。

(6)文中图表标题用宋体小四号字,表格内文字一般用宋体小四号或五号字,单行间距。

忌用异体字、复合字及一切不规范的简化字,除非必要,不使用繁体字。

(7)上下边距为2.54厘米,左右边距为3.18厘米。

(8)报告主体内容要简洁、明确,层次不宜过多,层次序号为:一、;(一);1.; (1);1)。

(9)数字用法:凡是公历世纪、年代、年、月、日、时刻、各种记数、计量均用阿拉伯数字;夏历和清代以前的历史纪年用汉字,并以圆括号加注公元纪年;邻近的两个数字并列连用以表示的概数,采用汉字。

(10)文中图表等:文中的图表、附录、参考文献、公式一律采用阿拉伯数字连续编号。如图1,表1,附注1,公式(1)。图序及图题置于图的下方居中,表序及表题置于表的上方居中,图序和图题之间、表序和表题之间空两格。论文中的公式编号用圆括号括起来写在右边行末,其间不加虚线。

(11)参考文献:对引文作者、出处、版本等详细情况的注明。

模板已设置好三线表,自动设置/更新图表名称,公式制表位编辑,目录自动更新等内容,还包含了本人当时的写作框架,不知道正大杯文字怎么写的可以入手了

流程图模板包括,全文流程图模板,调查流程图模板,线性结构模板,都可直接套用(Visio版,可直接在在线流程图网站Process on中打开)

### 正大 Python 数据分析竞赛概述 #### 竞赛背景与目标 正大 Python 数据分析竞赛旨在促进学生利用Python进行数据分析的能力,鼓励参赛者通过实际项目提升编程技能和解决复杂问题的能力。此类比赛通常由高校联合企业共同举办,目的是让学生能够在真实环境中应用所学知识。 #### 竞赛要求与规则 参与该竞赛需掌握一定的基础知识和技术能力: - **编程基础**:熟悉Python语言及其常用库如Pandas、Numpy等用于处理数据集[^1]。 - **算法理解**:具备基本的数据挖掘和机器学习概念,能实现简单的预测模型构建。 - **工具使用**:能够独立完成从数据预处理到可视化展示的一系列操作流程。 对于团队协作而言,寻找合适的队友至关重要。理想的队员应具有互补的专业背景——例如有人擅长统计理论(如方差检验、置信区间计算),而另一些成员则可能更精通于编写高效代码或熟练运用特定软件(如SPSS)来进行高级别的数据分析工作[^2]。 #### 如何准备 为了更好地迎接挑战,在备赛期间建议深入研究过往优秀作品案例以及官方文档说明材料。特别是关注那些涉及关系抽取和事件抽取的任务解决方案,这有助于拓宽思路并提高解决问题效率[^3]。 另外值得注意的是,在设计调查问卷时务必确保其科学性和合理性,即每个题目都应该紧密围绕研究目的展开,并且要有相应的理论支持作为依据。同时也要注意设置合理的因变量测量指标来评估最终成果的有效性[^4]。 ```python import pandas as pd from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression # 假设有一个CSV文件名为"data.csv" data = pd.read_csv('data.csv') X = data.drop(columns=['target']) y = data['target'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) model = LinearRegression() model.fit(X_train, y_train) predictions = model.predict(X_test) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值