往往我们感兴趣的复杂事件是由多个简单的事件组成的,这些简单事件比复杂事件清晰易计算,因此只要搞清楚这些简单事件和复杂事件的关系,那可以简单事件的计算来得到复杂事件的概率了;下面是几类关系,事件本身是集合,因此也是事件集合的关系
1. 事件的包含和相等
事件A包括事件B,代表A发生则B必然发生,
若 ,则A = B;
证明A和B相等的方法是假设A发生,则推出B发生;然后假设B发生,然后能退出A发生;
2. 事件的互斥与对立
互斥:A和B不再同一次试验中发生;
对立:A和B互斥,且A+B = 全部试验结果;
3. 事件的和(并)
C = A + B;事件C发生 = A发生或者 B 发生;
注:这里是集合运算,因此A和B的交集A只算一次;
4. 概率的加法
互斥事件和的概率 = 互斥事件概率的和
P(A1 + A2 + …) = P(A1) + P(A2) + …
A1,A2是互斥事件
5. 事件的积
C = AB;C事件 = A和B都发生
6. 事件的差
C = A – B;C事件 = A发生且B不发生
7. 条件概率,顾名思义,就是在一定条件下的概率,若有事件A,B,则在给定B发生的条件下A的条件概率,记为P(A|B) = P(AB) / P(B);
8. 事件的独立性/概率乘法
若P(A|B) = P(A),则说明,A发生的概率和B发生下A发生的概率一样,就说明B和A没啥关系,B发不发生对A没影响;这时,称A和B两事件相互独立,则:
P(AB)= P(A) * P(B)
9. 全概率公式
全概率公式解决的是当我们对一个事件的发生没有头绪时,把将之分解为在某一事件各种发生条件下的小事件;
全部试验结果:B = B1+ B2 + B3 ...,B1、B2。。。互斥;
A = A * (B1 + B2 + B3 + …) = A*B1 +A*B2 + A*B3
P(A) = P(A*B1) + P(A*B2) + …
=P(A/B1)*P(B1)+ P(A/B2)*P(B2) + …
10. 贝叶斯公式
若已知A发生,则B发生的概率,P(B|A)是条件概率:
P(Bi|A) = P(ABi)/P(A) = P(A|Bi)*P(Bi)/P(A)
P(A|Bi)成为先验概率,Bi是目的事件/结果i发生,A是条件/特征事件/原因;
P(A) 通过分解B用全概率公式求解,= sum(P(Bj)*P(A|Bj))
对事件的预测,贝叶斯是由结果推测原因;全概率是由原因推结果;