集体编程智慧
文章平均质量分 74
Hou_Rj
ruijiehou@gmail.com
展开
-
推荐系统:推荐方法
by 雨水无香1.1 基于内容的推荐系统 基于内容推荐是推荐系统中比较常见的一种做法,这种方法对于每个item基于其自身属性,抽取一些特征用来表示这个item的内容,从而推荐那些和当前item含有相同或相近特征的一些item。 这种推荐系转载 2011-10-12 16:33:56 · 1943 阅读 · 0 评论 -
推荐系统:常用相似度计算方法
by 雨水无香 不论是推荐系统,还是搜索引擎,都经常需要比较两个项目之间的相似度。常见的思想是将项目的特征的权值表示为N维空间向量,然后利用代数方法,对两个空间向量之间的距离、夹角等进行度量,从而表示相似度。常用的相似度计算方法有如下几种:1.1 欧氏转载 2011-10-12 16:37:24 · 4468 阅读 · 0 评论 -
利用皮尔逊相关度系数构建一个简单的推荐系统
by 小戴伴随着Web2.0概念的普及,我们正在广泛地享受推荐系统给我们带来的便利。现代的电子商务、SNS社区等应用大量地使用了推荐系统。通过推荐系统,人人网帮我们找到多年未见的老友,亚马逊总能知道我们偏好什么样的商品,而豆瓣网更是将算法和产品完美结合的最佳典转载 2011-10-12 17:17:28 · 2953 阅读 · 0 评论 -
基于物品的协作型过滤
由 小戴 在之前的利用皮尔逊相关度系数构建一个简单的推荐系统一文中,我们一起构建了一个简单的电影推荐系统。在那篇文章中我们使用基于用户的协作型过滤(user-based collaborative filtering)技术,利用来自以往每一位用户对电转载 2011-10-12 18:42:42 · 1446 阅读 · 0 评论 -
优化算法 - 遗传算法
遗传算法 ( GA , Genetic Algorithm ) ,也称进化算法 。 遗传算法是受达尔文的进化论的启发,借鉴生物进化过程而提出的一种启发式搜索算法。因此在介绍遗传算法前有必要简单的介绍生物进化知识。一.进化论知识 作为遗传算法生物背景转载 2011-10-15 17:27:39 · 3283 阅读 · 0 评论 -
算法总结(集体编程智慧) - 聚类、优化
非监督算法:聚类 1. 分级聚类每次寻找最近的2个进行合并(思路如同哈夫曼编码)2. K-均值聚类先设定k的中心(假设分为k类),每次计算空间样本与k个类中心分别距离,并归类,重新设定k中心,然后在重新计算,一直到k中心不再改变为之。原创 2011-10-17 10:48:55 · 1093 阅读 · 0 评论 -
算法总结(集体编程智慧) - 分类
监督算法:根据训练样本推测某一分类或某一数值。分类1. 贝叶斯分类器1.1 训练: 贝叶斯在对训练样本训练时,样本需要包含特征列表和对应的分类。比如,判断包含单词“Python”的文档是属于编程语言的,还是关于蛇的,如下图的:原创 2011-10-17 10:44:49 · 1707 阅读 · 0 评论