统计-4 概率、古典概率

本文介绍了概率的定义,通过举例说明了概率在决定是否带伞情况下的应用。讨论了古典概率的概念,即在试验有N个等可能结果,事件E包含M个结果时,事件E的概率P(E) = M/N。还提到了通过试验频率来估计概率,并简述了概率的公理化定义。最后,探讨了古典概率在排列组合中的应用。
摘要由CSDN通过智能技术生成

概率

描述事件发生可能性的指标


假设4个人要出去玩,要决定是否带伞,因此对事件 A = “明天会下雨”估计,甲说100%可能下雨,乙说70%,丙说30%,丁说0%肯定不下雨;这些数字代表了每个人对A的主观估计,因此称之为主观概率

主观概率不是依据客观事实的,也许是根据个人经验,比如会看天象,也许是个人得失考虑,比如不带伞而下雨比带伞不下雨的代价大;其能代表了个人的倾向,社会学家可能根据大家对经济发展速度的估计来看人民对未来的信心;


上面提到的事件是在概率论是 对某种情况的陈述,并不知道是否发生;验证其是否发生要靠试验,比如对事件“明天会下雨“的试验就是等明天看看是否下雨;事件一般包括一个明确界定的试验,并且在试验之前试验的全部结果都明确;通常把一次的试验结果成为一个基本事件一个或多个基本事件构成一个事件;比如掷一次骰子点数为偶数的事件是由掷骰子点数为2、4、6三个基本事件组成的;


古典概率:设一个试验有N个等可能性的结果,而事件E包含了M个结果,那么事件E的概率,记为P(E)定义为:p(E) =M/N;

因为每个等可能基本事件概率为1/N,因此M个自然就是M/N;

古典概率求解主要是基于排列组合;
l 例子1
甲乙两个赌徒,各处赌资500元,约定5局三胜,谁赢谁把钱都拿走,而当甲2:1乙的时候,赌博停止,问怎么分?
如果都给甲对乙不公平,平均分对甲又不公平;有一种解法是甲:乙为2:1,因此甲取2/3,乙拿剩下的1/3;仔细想想,这只是对已发生试验的计算,未发生的试验没有考虑,基于古典概率排列组合的思想,不就是剩下2局了么,我们把赢的所有的情况列出来:
甲甲,甲乙,乙甲,乙乙
其中甲甲、甲乙,乙甲三种情况甲赢;而乙乙是乙赢,因此在甲:乙是2:1的情况下,再比赛两局甲赢的概率是3/4,乙是1/4,因此这笔钱应该3:1分;
从上面的例子可以看出,古典概率的局限性是:只能用于试验结果有限,且等可能成立的情况;
假如试验结果是无限多的,可以通过将古典概率中等可能性引申为等面积,那么就是几何概率了;几何自然通过需左图更易理解,如下例:
| 例子2
甲乙两人相约在1点到2点见面,约定如果先到的等10分钟等不到人就闪,如果甲乙各自在1-2点任意事件到,那么问事件E“这两个人能成功见面“的概率是多大?

这根本组合不出来结果,假设x是甲到来的事件,y是乙到来的事件,则x和y的范围都是0-1,他们相见的条件是|x-y | < 10;基于此,作图如下:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值