MATLAB: 0-1规划(背包问题)

本文介绍了如何使用MATLAB的intlinprog函数解决0-1背包问题,通过一个实例展示了在有限重量限制下,选择物品以最大化总价值的过程。详细解释了模型构建和代码实现。
摘要由CSDN通过智能技术生成

      优化算法是在满足一定的条件下,在众多方案中选择出最优方案,使得一个或者多个目标函数达到最优,或者使得系统的某些性能指标达到最大值或者最小值。

      在实际问题中,优化问题随处可见,目标函数求极值、背包问题、旅行商问题等都会用到优化算法。

实例分析: 

      有50个物品和1个背包,每个物品有相应的价值和重量,背包可承受的最大重量为1000kg, 要在重量范围内选取最大价值的物品。    

      各个物品质量和价值如下:

% 各个物品的质量:

w=[80,82,85,70,72,70,82,75,78,45,49,76,45,35,94,49,76,79,84,74,76,63,35,26,52,12,56,78,

16,52,16,42,18,46,39,80,41,41,16,35,70,72,70,66,50,55,25,50,55,40];

% 各个物品的价值:

v=[200,208,198,192,180,180,168,176,182,168,187,138,184,154,168,175,198,184,158,148

174,135,126,156,123,145,164,145,134,164,134,174,102,149,134,156,172,164,101,154,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MATLAB码农

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值