自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(4691)
  • 资源 (27)
  • 收藏
  • 关注

原创 回归预测 | MATLAB实现PSO-SVR粒子群优化支持向量机回归多输入单输出预测

支持向量机回归 (Support Vector Regression, SVR) 作为一种强大的机器学习算法,在非线性回归预测中展现出显著的优势。然而,SVR 模型的性能高度依赖于其参数的选取,例如惩罚因子 C 和核函数参数 γ。参数选择的优劣直接影响模型的泛化能力和预测精度。传统的参数寻优方法,例如网格搜索法和交叉验证法,往往计算量巨大,效率低下,尤其在面对多输入单输出的复杂预测问题时,其局限性更加明显。因此,寻求一种高效且有效的参数优化策略至关重要。

2024-11-03 11:55:06 374

原创 时序分解 | Matlab实现CEEMDAN完全自适应噪声集合经验模态分解时间序列信号分解

经验模态分解 (Empirical Mode Decomposition, EMD) 作为一种自适应的非线性信号处理方法,在处理非平稳非线性时间序列信号方面展现出显著优势。然而,EMD 固有的模态混叠 (Mode Mixing) 问题严重限制了其应用范围。为了克服模态混叠,一系列改进算法被提出,其中集合经验模态分解 (Ensemble Empirical Mode Decomposition, EEMD) 通过向原始信号添加白噪声来抑制模态混叠,取得了较好的效果。

2024-11-03 11:49:40 300

原创 多维时序 | MATLAB实现PSO-BP多变量时间序列预测(粒子群优化BP神经网络)

多变量时间序列预测在诸多领域,例如金融预测、气象预报、电力负荷预测等,都扮演着至关重要的角色。准确预测未来趋势对于资源分配、风险管理以及决策制定都具有显著意义。然而,由于多变量时间序列数据的复杂性,例如非线性、非平稳性以及变量间的相互依赖性,传统的预测方法往往难以取得令人满意的精度。近年来,基于神经网络的预测方法因其强大的非线性映射能力而备受关注。其中,反向传播神经网络(BP神经网络)因其结构简单、易于实现而成为一种常用的预测模型。

2024-11-03 11:47:54 438

原创 回归预测 | MATLAB实现RUN-XGBoost龙格库塔优化极限梯度提升树多输入回归预测

极限梯度提升树 (XGBoost) 作为一种高效且强大的机器学习算法,在诸多回归预测问题中展现出优异的性能。然而,XGBoost 的参数众多且相互关联,其最佳参数组合往往依赖于具体的应用场景和数据集,需要耗费大量时间进行调参。为了提升 XGBoost 模型的预测精度和效率,本文探讨了一种基于龙格库塔 (Runge-Kutta) 方法优化 XGBoost 参数的策略,并将其应用于多输入回归预测中,旨在构建一个更高效、更精准的预测模型。

2024-11-03 11:46:22 334

原创 多维时序 | MATLAB实现GA-BP多变量时间序列预测(遗传算法优化BP神经网络)

多变量时间序列预测在诸多领域都扮演着至关重要的角色,例如金融市场预测、气象预报、电力负荷预测等等。传统的预测方法,如ARIMA模型、指数平滑法等,在处理复杂非线性关系时往往力不从心。近年来,随着人工智能技术的快速发展,神经网络,特别是反向传播神经网络(BP神经网络),因其强大的非线性映射能力而成为时间序列预测领域的热门研究方向。然而,BP神经网络的性能高度依赖于网络结构和参数的设置,而这些参数的确定通常需要大量的经验和反复试验,效率低下且结果难以保证最优。

2024-11-03 11:41:49 548

原创 分类预测 | MATLAB实现NGO-CNN北方苍鹰算法优化卷积神经网络数据分类预测

卷积神经网络 (Convolutional Neural Network, CNN) 在图像识别、目标检测等领域取得了显著成果,然而其性能受制于网络结构设计和训练参数的优化。本文提出了一种基于北方苍鹰算法 (Northern Goshawk Algorithm, NGO) 优化的卷积神经网络 (NGO-CNN) 用于数据分类预测。北方苍鹰算法作为一种新型的元启发式算法,具有全局搜索能力强、收敛速度快的优点,可以有效地优化CNN的超参数,提升模型的分类精度和泛化能力。

2024-11-03 11:40:41 433

原创 时序预测 | MATLAB实现改进海洋捕食算法ICEEMDAN-IMPA-GRU时间序列预测

海洋捕食算法(MPA)作为一种新型元启发式算法,因其模拟海洋生物捕食行为而具有较强的全局搜索能力,但在局部搜索方面存在不足。门控循环单元(GRU)神经网络在处理时间序列数据方面表现出色,但其参数优化依赖于算法的选择,且容易陷入局部最优。本文提出了一种改进的海洋捕食算法ICEEMDAN-IMPA-GRU模型,用于提高时间序列预测精度。该模型首先利用完备集合经验模态分解(ICEEMDAN)对原始时间序列进行分解,降低数据复杂性并提取有效信息;

2024-11-03 11:38:25 472

原创 分类预测 | MATLAB实现KOA-CNN-BiGRU开普勒算法优化卷积双向门控循环单元数据分类预测

近年来,随着数据规模的爆炸式增长和数据类型的多样化,高效准确的数据分类预测方法成为各个领域研究的热点。卷积神经网络(CNN)擅长捕捉局部特征,而双向门控循环单元(BiGRU)能够有效处理序列数据中的时间依赖性。将两者结合,可以充分利用不同类型数据的优势,提高分类预测的精度。然而,传统的CNN-BiGRU模型在面对复杂、非线性数据时,容易出现过拟合或局部最优解等问题。

2024-11-03 11:36:17 481

原创 分类预测 | MATLAB实现POA-CNN鹈鹕算法优化卷积神经网络多特征分类预测

卷积神经网络 (Convolutional Neural Network, CNN) 在图像识别、目标检测等领域取得了显著的成功,其强大的特征提取能力使其成为多特征分类预测任务的理想选择。然而,传统的CNN模型往往依赖于人工设计的超参数,例如卷积核大小、网络层数等,这些超参数的设置直接影响模型的性能。为了提高CNN模型的泛化能力和预测精度,需要寻求一种有效的优化算法来自动寻优这些超参数。

2024-11-03 11:04:38 432

原创 时序分解 | Matlab实现SSA-VMD麻雀算法优化变分模态分解时间序列信号分解

时间序列信号分解是信号处理领域中的一个重要课题,其目标是将复杂的非平稳信号分解为若干个具有物理意义的本征模态函数 (IMF)。变分模态分解 (VMD) 作为一种新型的信号分解方法,具有较好的适应性和鲁棒性,但其分解结果受惩罚参数k和带宽参数α的影响较大,参数的选择往往依赖经验,影响分解效果。本文提出了一种基于麻雀搜索算法 (SSA) 优化的 VMD 时间序列信号分解方法 (SSA-VMD),利用 SSA 算法优化 VMD 的参数 k 和 α,从而提高分解精度和有效性。

2024-11-03 11:02:55 602

原创 分类预测 | MATLAB实现SSA-CNN麻雀算法优化卷积神经网络数据分类预测

卷积神经网络 (Convolutional Neural Network, CNN) 在图像、语音等数据分类预测任务中取得了显著的成功。然而,CNN 的性能高度依赖于网络结构参数和超参数的设置,而这些参数的优化通常是一个复杂且耗时的过程。传统的参数寻优方法,例如网格搜索和随机搜索,效率低下且容易陷入局部最优解。因此,寻求一种高效、鲁棒的优化算法来提升 CNN 的性能至关重要。

2024-11-03 11:00:48 489

原创 分类预测 | MATLAB实现KOA-CNN-LSTM开普勒算法优化卷积长短期记忆神经网络数据分类预测

卷积神经网络(CNN)和长短期记忆神经网络(LSTM)在数据分类预测领域展现出强大的能力,但面对复杂、高维的数据时,其性能仍存在提升空间。本文探讨一种基于开普勒算法(KOA)优化的CNN-LSTM网络结构,旨在提高其在数据分类预测任务中的准确性和效率。我们将深入分析KOA算法的优化机制,以及其与CNN-LSTM网络的结合方式,并通过实验验证该方法的有效性。CNN擅长提取局部特征,而LSTM则擅长处理序列数据中的时间依赖性。

2024-11-03 10:58:43 546

原创 分类预测 | MATLAB实现KOA-CNN开普勒算法优化卷积神经网络数据分类预测

卷积神经网络 (Convolutional Neural Network, CNN) 在图像、语音和文本等数据分类预测任务中取得了显著的成功。然而,CNN 的性能高度依赖于网络结构的设计和参数的优化,而传统的优化算法,如随机梯度下降 (Stochastic Gradient Descent, SGD) 及其变体,往往面临收敛速度慢、易陷入局部最优等问题。

2024-11-03 10:56:42 619

原创 分类预测 | Matlab实现BES-ELM秃鹰搜索算法优化极限学习机分类预测

极限学习机(Extreme Learning Machine, ELM)作为一种新型的单隐层前馈神经网络(Single Hidden Layer Feedforward Neural Networks, SLFNs),凭借其训练速度快、泛化能力强等优点,在模式识别、分类预测等领域得到了广泛应用。然而,ELM的性能很大程度上依赖于输入权重和偏置的随机初始化,这可能会导致其预测精度不稳定,甚至陷入局部最优解。

2024-11-03 10:26:06 462

原创 多维时序 | MATLAB实现GWO-BP多变量时间序列预测(灰狼算法优化BP神经网络)

本文探讨了利用灰狼算法 (Grey Wolf Optimizer, GWO) 优化 BP 神经网络 (Back Propagation neural network, BPNN) 进行多变量时间序列预测的方法。BP 神经网络作为一种强大的非线性建模工具,在时间序列预测中具有广泛应用,然而其容易陷入局部最优解以及参数选择困难的问题一直是制约其性能的关键因素。灰狼算法作为一种新型的元启发式优化算法,具有收敛速度快、全局搜索能力强的特点,可以有效地解决 BP 神经网络的优化问题。

2024-11-03 10:23:51 420

原创 回归预测 | MATLAB实现BO-LSSVM贝叶斯优化算法优化最小二乘支持向量机数据回归预测(多指标,多图)

最小二乘支持向量机(LSSVM)作为一种强大的回归预测工具,其性能高度依赖于参数的选择。传统的参数寻优方法,如网格搜索和交叉验证,效率低下且容易陷入局部最优。本文提出了一种基于贝叶斯优化的LSSVM参数优化方法 (BO-LSSVM),利用贝叶斯优化算法高效地搜索LSSVM的最优参数组合,并将其应用于数据回归预测。通过多个指标和图表,系统地评估了BO-LSSVM算法在不同数据集上的性能,并与传统的参数寻优方法进行了比较,证明了BO-LSSVM算法在提高预测精度和效率方面的优势。

2024-11-02 22:23:12 496

原创 分类预测 | MATLAB实现基于RF-Adaboost随机森林结合AdaBoost多输入分类预测

近年来,随着数据规模的爆炸式增长和复杂性的日益提升,多输入分类预测问题在诸多领域中扮演着越来越重要的角色。例如,在医学诊断中,需要结合患者的多种临床指标进行疾病分类;在金融风险评估中,需要综合考虑多种经济因素预测风险等级;在图像识别中,需要从多通道图像数据中提取特征进行目标分类。传统的分类算法在面对高维、非线性、噪声数据时往往难以取得理想的预测精度和鲁棒性。为此,本文探讨一种基于随机森林(Random Forest, RF)和AdaBoost算法相结合的多输入分类预测方法,旨在提升模型的预测性能和泛化能力。

2024-11-02 22:22:01 410

原创 多输入多输出 | MATLAB实现CNN-BiLSTM-Attention卷积神经网络-双向长短期记忆网络结合SE注意力机制的多输入多输出预测

近年来,随着数据规模的爆炸式增长和深度学习技术的飞速发展,多输入多输出预测问题受到了广泛关注。该类问题通常需要处理复杂、高维的时空数据,并预测多个相关的输出变量。传统的预测模型往往难以捕捉数据中的非线性关系和长程依赖,因此,构建一种能够有效处理多输入多输出预测问题的深度学习模型至关重要。本文将深入探讨一种结合卷积神经网络(CNN)、双向长短期记忆网络(BiLSTM)和挤压激励注意力机制(SE Attention)的多输入多输出预测模型,分析其原理、优势及应用前景。一、模型架构及原理。

2024-11-02 22:19:58 363

原创 多输入多输出 | MATLAB实现CNN-GRU-Attention卷积神经网络-门控循环单元结合SE注意力机制的多输入多输出预测

近年来,随着数据规模的爆炸式增长和复杂系统建模需求的日益提升,对多输入多输出(Multiple-Input Multiple-Output, MIMO)预测模型的研究成为了人工智能领域的一个热点。

2024-11-02 22:18:54 470

原创 多输入多输出 | MATLAB实现CNN-BiGRU-Attention卷积神经网络-双向门控循环单元结合SE注意力机制的多输入多输出预测

近年来,随着深度学习技术的飞速发展,多输入多输出预测问题在各个领域都得到了广泛关注,例如时间序列预测、自然语言处理和图像识别等。传统的预测模型往往难以有效处理复杂的时间依赖性和高维特征信息,而卷积神经网络(CNN)、双向门控循环单元(BiGRU)和注意力机制(Attention)的结合,为解决这一难题提供了一种有效途径。本文将深入探讨CNN-BiGRU-Attention模型在多输入多输出预测中的应用,分析其优势,并展望其未来发展方向。

2024-11-02 22:18:00 428

原创 多输入多输出 | MATLAB实现PSO-RBF粒子群优化径向基神经网络多输入多输出预测

径向基函数神经网络(Radial Basis Function Neural Network, RBFNN)以其结构简单、逼近能力强等优点,在非线性系统建模与预测中得到广泛应用。然而,RBFNN 的性能很大程度上依赖于网络结构参数,例如隐含层神经元个数、中心向量和宽度参数等的选择。传统的参数确定方法,例如试错法或经验公式法,效率低且精度难以保证。因此,寻求一种高效、精确的RBFNN参数优化方法至关重要。

2024-11-02 22:17:03 419

原创 回归预测 | MATLAB实现IBES-ELM基于改进的秃鹰搜索优化算法优化极限学习机的数据回归预测(多指标,多图)

极限学习机 (ELM) 作为一种新型的单隐层前馈神经网络,以其训练速度快、泛化能力强的优势备受关注。然而,ELM 的性能高度依赖于输入权重和隐层偏差的初始化,其随机初始化的方式可能导致预测精度不稳定。本文提出一种基于改进秃鹰搜索算法 (IBES) 优化的极限学习机 (IBES-ELM) 用于数据回归预测。改进的秃鹰搜索算法通过引入自适应权重调整策略和精英策略,有效提高了算法的全局搜索能力和收敛速度,从而更好地优化 ELM 的网络参数。

2024-11-02 22:16:09 594

原创 分类预测 | MATLAB实现基于GRU-AdaBoost门控循环单元结合AdaBoost多输入分类预测

近年来,随着大数据时代的到来,多输入分类预测问题在各个领域都得到了广泛关注。传统机器学习方法在处理复杂非线性关系和序列数据时往往力不从心,而深度学习,特别是循环神经网络(RNN)及其变种,展现出了强大的学习能力,能够有效地捕捉数据中的时间依赖性和模式。本文将探讨基于门控循环单元 (GRU) 和 AdaBoost 算法结合的多输入分类预测模型,分析其优势,并对未来研究方向进行展望。GRU作为RNN的一种改进,通过门控机制有效地解决了传统RNN存在的梯度消失问题,能够更好地处理长序列数据。

2024-11-02 22:13:30 476

原创 分类预测 | MATLAB实现基于BiGRU-AdaBoost双向门控循环单元结合AdaBoost多输入分类预测

近年来,随着数据规模的爆炸式增长和复杂性日益提升,多输入分类预测问题在各个领域都面临着巨大的挑战。传统的机器学习方法在处理序列数据和高维特征时往往力不从心,而深度学习技术的兴起为解决这一问题提供了新的途径。本文将深入探讨一种基于双向门控循环单元(BiGRU)和AdaBoost算法的多输入分类预测模型,并分析其在提升预测精度和鲁棒性方面的优势。一、模型架构设计该模型的核心思想是结合BiGRU的序列建模能力和AdaBoost的集成学习优势,以有效处理多输入序列数据并提高分类预测的准确率。

2024-11-02 22:12:23 556

原创 回归预测 | MATLAB实现BO-GRU贝叶斯优化门控循环单元多输入单输出回归预测

门控循环单元 (GRU) 作为一种先进的循环神经网络 (RNN),在时间序列预测领域展现出强大的能力,尤其擅长处理长序列依赖关系。然而,GRU 模型的性能高度依赖于超参数的设置,而寻找最佳超参数组合通常需要耗费大量的时间和计算资源。贝叶斯优化 (BO) 作为一种高效的全局优化算法,能够在有限的预算下找到近似最优的超参数配置,从而显著提升 GRU 模型的预测精度。本文将深入探讨 BO-GRU 模型在多输入单输出回归预测中的应用,分析其原理、优势以及在实际应用中的挑战。一、 GRU 模型及其在回归预测中的应用。

2024-11-02 22:09:47 679

原创 分类预测 | Matlab实现WOA-GRU鲸鱼算法优化门控循环单元的数据多输入分类预测

门控循环单元(GRU)作为一种有效的循环神经网络模型,在处理时间序列数据和序列预测方面表现出色。然而,GRU模型的参数选择对最终预测精度影响显著,且容易陷入局部最优解。本文提出了一种基于鲸鱼优化算法(WOA)优化GRU模型参数的改进方法,用于解决多输入数据分类预测问题。通过WOA算法的全局搜索能力,对GRU模型中的关键参数(如隐藏单元数量、学习率等)进行优化,从而提高模型的预测精度和泛化能力。

2024-11-02 21:46:56 387

原创 分类预测 | MATLAB实现基于BiLSTM-AdaBoost双向长短期记忆网络结合AdaBoost多输入分类预测

本文探讨了一种基于双向长短期记忆网络 (BiLSTM) 和 AdaBoost 算法的多输入分类预测模型。该模型利用 BiLSTM 强大的序列建模能力捕获输入数据中的时间依赖性,并通过 AdaBoost 算法集成多个 BiLSTM 模型,从而提升模型的泛化能力和预测精度。我们将详细阐述模型的架构、训练过程以及参数优化策略,并通过实验结果验证该模型在多输入分类任务中的有效性。与其他常用分类模型相比,该模型在处理复杂时间序列数据时展现出显著优势。

2024-11-02 21:32:18 500

原创 分类预测 | MATLAB实现基于LSTM-AdaBoost长短期记忆网络结合AdaBoost多输入分类预测

近年来,随着大数据时代的到来和数据挖掘技术的快速发展,多输入分类预测问题日益受到关注。在诸多领域,例如金融预测、医疗诊断、自然语言处理等,都需要对多个输入特征进行综合分析,以实现对目标变量的准确预测。传统的机器学习算法在处理这类问题时,往往难以捕捉数据中的复杂非线性关系和时间序列信息。而长短期记忆网络(LSTM)作为一种循环神经网络,具备强大的序列建模能力,能够有效处理时间序列数据并提取其中的特征。然而,单一的LSTM模型在面对高维、噪声较大的数据时,其预测精度和鲁棒性可能受到限制。

2024-11-02 21:27:58 796

原创 分类预测 | MATLAB实现WOA-LSTM鲸鱼算法优化长短期记忆网络数据分类预测

长短期记忆网络 (LSTM) 作为一种循环神经网络 (RNN) 的变体,在处理时间序列数据和序列预测问题上展现出显著的优势,其独特的门控机制有效地解决了传统RNN存在的梯度消失问题。然而,LSTM 网络的性能高度依赖于其超参数的设置,例如隐藏层单元数、学习率以及优化算法的选择。不恰当的超参数设置可能导致模型过拟合或欠拟合,从而影响其分类预测的准确性和效率。

2024-11-02 21:24:17 588

原创 多维时序 | MATLAB实现SSA-CNN-LSTM-Attention多变量时间序列预测(SE注意力机制)

多变量时间序列预测在诸多领域具有广泛的应用,例如交通流量预测、电力负荷预测以及金融市场预测等。传统的预测方法,例如ARIMA和指数平滑法,在处理高维、非线性以及复杂的时空依赖性数据时往往力不从心。近年来,深度学习方法,特别是卷积神经网络(CNN)、长短期记忆网络(LSTM)以及注意力机制(Attention Mechanism)的兴起,为多变量时间序列预测提供了新的思路和强大的工具。

2024-11-02 21:21:44 396

原创 多头注意力+自适应带宽核密度估计+区间预测 | LSTM-MATT-ABKDE的多头注意力机制自适应带宽核密度估计多变量回归区间预测(Matlab实现)

近年来,随着大数据时代的到来以及对预测精度的更高要求,时间序列预测领域取得了显著进展。传统的单变量时间序列预测模型已难以满足复杂多变量时间序列预测的需求,尤其是在需要提供预测区间而非单点预测的场景下。本文将深入探讨一种基于长短期记忆网络 (LSTM)、多头注意力机制 (MATT)、自适应带宽核密度估计 (ABKDE) 的多变量回归区间预测模型——LSTM-MATT-ABKDE,分析其核心思想及优势,并展望其未来发展方向。LSTM作为一种循环神经网络,能够有效地捕捉时间序列数据中的长期依赖关系。

2024-11-01 22:20:31 774

原创 Matlab实现基于RVM-Adaboost相关向量机结合Adaboost集成学习多变量时间序列预测(负荷预测)

电力负荷预测作为电力系统运行和规划的关键环节,其准确性直接影响着系统的安全稳定运行和经济效益。传统的单一模型预测方法,例如ARIMA、支持向量机等,在面对多变量、非线性、噪声干扰等复杂电力负荷数据时,往往精度有限且鲁棒性较差。近年来,基于集成学习的预测方法逐渐受到关注,其通过组合多个基学习器来提高预测精度和泛化能力。本文将探讨一种基于相关向量机 (Relevance Vector Machine, RVM) 与 Adaboost 集成学习的多变量时间序列负荷预测方法,并分析其优势和局限性。

2024-11-01 22:18:30 489

原创 分类预测 | MATLAB实现SSA-CNN-BiLSTM麻雀算法优化卷积双向长短期记忆神经网络数据分类预测

近年来,随着大数据时代的到来,数据分类预测在各个领域得到了广泛应用,例如图像识别、语音识别、自然语言处理等。卷积神经网络 (CNN) 和双向长短期记忆神经网络 (BiLSTM) 凭借其强大的特征提取和序列建模能力,成为数据分类预测领域的主流方法。然而,传统CNN-BiLSTM模型存在一些不足,例如参数冗余、容易陷入局部最优解等,影响了其预测精度和效率。为了解决这些问题,本文提出了一种基于麻雀搜索算法 (SSA) 优化的卷积双向长短期记忆神经网络 (SSA-CNN-BiLSTM) 数据分类预测模型。

2024-11-01 22:16:59 758

原创 回归预测 | MATLAB实现IWOA-LSTM改进鲸鱼算法算法优化长短期记忆神经网络的数据回归预测(多指标,多图)

长短期记忆神经网络 (LSTM) 在时间序列数据回归预测中展现出强大的能力,但其参数优化对预测精度影响显著。本文提出了一种基于改进鲸鱼算法 (IWOA) 的 LSTM 网络优化方法,旨在提升 LSTM 网络在多指标数据回归预测中的准确性和效率。通过对标准鲸鱼算法进行改进,增强其全局搜索和局部寻优能力,并将其应用于 LSTM 网络参数的优化,最终实现对多指标数据的精确预测。

2024-11-01 22:15:38 680

原创 分类预测 | MATLAB实现SSA-CNN-BiLSTM-Attention数据分类预测(SE注意力机制)

近年来,深度学习在数据分类预测领域取得了显著进展。卷积神经网络 (CNN) 擅长提取局部特征,双向长短时记忆网络 (BiLSTM) 擅长捕捉序列信息,而注意力机制则能够有效地关注关键信息,提升模型的表达能力。

2024-11-01 22:14:45 615

原创 回归预测 | MATLAB实现基于BP-Adaboost的BP神经网络结合AdaBoost多输入单输出回归预测

本文探讨了一种基于BP神经网络和AdaBoost算法相结合的多输入单输出回归预测模型,即BP-Adaboost模型。该模型利用AdaBoost算法提升BP神经网络的预测精度和泛化能力,有效克服了BP神经网络易陷入局部最小值、预测精度受初始权值影响较大等缺点。通过将AdaBoost算法的加权策略与BP神经网络的非线性映射能力相结合,该模型能够更好地拟合复杂非线性的回归关系,提高预测的准确性和稳定性。本文详细阐述了BP-Adaboost模型的构建过程、算法实现细节以及性能评估指标。

2024-11-01 22:09:06 411

原创 时序预测 | MATLAB实现BO-CNN-GRU贝叶斯优化卷积门控循环单元时间序列预测

时间序列预测在各个领域都具有重要的应用价值,例如金融市场预测、气象预报、交通流量预测等。准确地预测未来趋势对于决策制定至关重要。近年来,深度学习技术在时间序列预测领域取得了显著进展,其中卷积神经网络 (CNN) 和门控循环单元 (GRU) 由于其强大的特征提取能力和处理长序列数据的能力而备受关注。然而,这些模型的超参数调优往往依赖于经验和大量的实验,效率低下且容易陷入局部最优。本文将探讨一种基于贝叶斯优化的 CNN-GRU 模型用于时间序列预测的方法,即 BO-CNN-GRU,并深入分析其优势和局限性。

2024-11-01 22:07:07 555

原创 BiLSTM-MATT-ABKDE的多头注意力机制自适应带宽核密度估计多变量回归区间预测 | 多头注意力+自适应带宽核密度估计+区间预测(Matlab实现)

本文探讨一种基于双向长短期记忆网络(BiLSTM)、多头注意力机制(Multi-Head Attention, MATT)、自适应带宽核密度估计(Adaptive Bandwidth Kernel Density Estimation, ABKDE)的多变量回归区间预测方法。该方法旨在提高多变量时间序列预测的精度和鲁棒性,尤其在处理非线性、非平稳数据以及区间预测方面展现出显著优势。传统的回归预测方法,例如线性回归或支持向量回归,在处理复杂的时间序列数据时往往力不从心。

2024-11-01 22:03:37 556

原创 区间预测 | PSO-RF-KDE的粒子群优化随机森林结合核密度估计多变量回归区间预测(Matlab)

区间预测,相较于传统的点预测,更能全面反映预测结果的不确定性,在诸多领域具有更强的实用价值。本文将深入探讨一种基于粒子群优化随机森林(PSO-RF)结合核密度估计(KDE)的多变量回归区间预测方法,分析其原理、优势以及潜在应用。传统的回归模型通常只提供单点预测值,忽略了预测变量之间的复杂关系以及模型本身存在的误差,难以准确反映预测结果的不确定性。而区间预测则能给出预测变量在特定置信水平下的预测区间,提供更可靠的决策依据。

2024-11-01 22:01:47 571

原创 GRU-MATT-ABKDE的多头注意力机制自适应带宽核密度估计多变量回归区间预测(Matlab实现)

本文探讨一种基于门控循环单元 (GRU)、多头注意力机制 (MATT)、自适应带宽核密度估计 (ABKDE) 的多变量回归区间预测模型。该模型旨在提高多变量时间序列数据回归区间预测的精度和鲁棒性,尤其针对非线性、非平稳以及存在异方差等复杂情况。传统的多变量回归预测方法往往难以捕捉数据中的复杂依赖关系和非线性特征,而本文提出的模型通过巧妙地结合GRU、MATT和ABKDE,有效地解决了这些问题。首先,门控循环单元 (GRU)作为模型的基础架构,负责捕捉时间序列数据中的长期依赖关系。

2024-11-01 21:59:27 489

用于分析二维可压缩和不可压缩流的MATLAB工具.rar

用于分析二维可压缩和不可压缩流的MATLAB工具.rar

2024-10-10

用于从测量的IV曲线表征PV面板参数,包括理想因子、串联和分流电阻Matlab代码.rar

用于从测量的IV曲线表征PV面板参数,包括理想因子、串联和分流电阻Matlab代码.rar

2024-10-10

用于乙醇生产的酵母发酵生物反应器simulink.rar

用于乙醇生产的酵母发酵生物反应器simulink.rar

2024-10-10

用机理建模和最小二乘建模的方法对二元精馏塔建模Matlab代码.rar

用机理建模和最小二乘建模的方法对二元精馏塔建模Matlab代码.rar

2024-10-10

应用非线性控制中大部分滑模控制Matlab代码.rar

应用非线性控制中大部分滑模控制Matlab代码.rar

2024-10-10

用matlab实现工业精馏塔的控制,包括模型仿真,前馈反馈控制,内模和DMC控制等.rar

用matlab实现工业精馏塔的控制,包括模型仿真,前馈反馈控制,内模和DMC控制等.rar

2024-10-10

使用遗传算法寻找水手路径,使用强化学习和遗传算法为水手寻找最佳路径Matlab代码.rar

使用遗传算法寻找水手路径,使用强化学习和遗传算法为水手寻找最佳路径Matlab代码.rar

2024-10-10

使用深度强化学习解决视觉跟踪和视觉导航问题Matlab代码.rar

使用深度强化学习解决视觉跟踪和视觉导航问题Matlab代码.rar

2024-10-10

使用龙格库塔算法求解青霉素发酵非结构动力学过程模型Matlab代码.rar

使用龙格库塔算法求解青霉素发酵非结构动力学过程模型Matlab代码.rar

2024-10-10

使用投影统计进行电力系统状态估计的稳健 GM 估计器的 Matlab 代码.rar

使用投影统计进行电力系统状态估计的稳健 GM 估计器的 Matlab 代码.rar

2024-10-10

使用Matlab包imfindcircles来识别给定视场中液滴的数量和大小Matlab代码.rar

使用Matlab包imfindcircles来识别给定视场中液滴的数量和大小Matlab代码.rar

2024-10-10

生成多面体投影图像的MATLAB代码.rar

生成多面体投影图像的MATLAB代码.rar

2024-10-10

柔性电力系统中油浸式变压器的最佳老化极限的MATLAB代码.rar

柔性电力系统中油浸式变压器的最佳老化极限的MATLAB代码.rar

2024-10-10

控制具有污染云跟踪的模拟无人机群Matlab代码.rar

控制具有污染云跟踪的模拟无人机群Matlab代码.rar

2024-10-10

精馏塔模型计算matlab代码.rar

精馏塔模型计算matlab代码.rar

2024-10-10

逆变器通过LCL滤波器与电网相连。电流控制器维持注入电网的所需电流simulink.zip

逆变器通过LCL滤波器与电网相连。电流控制器维持注入电网的所需电流simulink.zip

2024-10-10

精馏塔模拟与优化器Matlab代码.rar

精馏塔模拟与优化器Matlab代码.rar

2024-10-10

螺旋压缩弹簧的设计优化Matlab代码.rar

螺旋压缩弹簧的设计优化Matlab代码.rar

2024-10-10

精馏塔matlab程序,用于精留塔的物料和能量衡算.rar

精馏塔matlab程序,用于精留塔的物料和能量衡算.rar

2024-10-10

精馏塔建模仿真,MATLAB程序含操作界面,精馏塔各项参数均可在界面输入.rar

精馏塔建模仿真,MATLAB程序含操作界面,精馏塔各项参数均可在界面输入.rar

2024-10-10

中国工业互联网研究院:2023消费品行业数字化转型白皮书-纺织家电行业.pdf

中国工业互联网研究院:2023消费品行业数字化转型白皮书——纺织家电行业.pdf

2024-10-24

智能锁系列报告一:核心竞争力辨析,供应链与服务生态缺一不可.pdf

智能锁系列报告一:核心竞争力辨析,供应链与服务生态缺一不可.pdf

2024-10-24

智能汽车系列(十四):需求为基,自动驾驶踏浪而行.pdf

智能汽车系列(十四):需求为基,自动驾驶踏浪而行.pdf

2024-10-24

智能电动时代,中国汽车产业供应链面临的挑战与机遇.pdf

智能电动时代,中国汽车产业供应链面临的挑战与机遇.pdf

2024-10-24

智汇谷&阿里云:2022跨境电商行业发展研究报告.pdf

智汇谷&阿里云:2022跨境电商行业发展研究报告.pdf

2024-10-24

银泰百货:新零售时代下,商场导购生存与发展报告.pdf

银泰百货:新零售时代下,商场导购生存与发展报告.pdf

2024-10-19

易凯资本:2024易凯资本中国健康产业白皮书-医药与生物科技篇.pdf

易凯资本:2024易凯资本中国健康产业白皮书-医药与生物科技篇.pdf

2024-10-19

易观分析:中国互联网母婴行业年度分析2023.pdf

易观分析:中国互联网母婴行业年度分析2023.pdf

2024-10-19

易观分析:2022互联网母婴行业用户洞察(1).pdf

易观分析:2022互联网母婴行业用户洞察(1).pdf

2024-10-19

易观:中国数字经济全景白皮书V5-扩充新零售篇.pdf

易观:中国数字经济全景白皮书V5-扩充新零售篇.pdf

2024-10-19

亿邦智库:细分增长 2022东南亚跨境电商出海报告.pdf

亿邦智库:细分增长 2022东南亚跨境电商出海报告.pdf

2024-10-19

小红书2024母婴健康行业项目全景互联网通案(2).pdf

小红书2024母婴健康行业项目全景【互联网】【通案】(2).pdf

2024-10-16

《中国新消费新品牌研究报告(2000名消费者调研,20家品牌方访谈)》.pdf

《中国新消费新品牌研究报告(2000名消费者调研,20家品牌方访谈)》.pdf

2024-10-16

《全域经营-新商业环境下零售企业价值增长路径》-36页.pdf

《全域经营—新商业环境下零售企业价值增长路径》-36页.pdf

2024-10-16

《2023年度中国消费洞察白皮书(消费市场的趋势方向、新模式)》.pdf

《2023年度中国消费洞察白皮书(消费市场的趋势方向、新模式)》.pdf

2024-10-16

(1215)赛迪译丛:《确保半导体供应链安全:一项国际合作的积极议程》-30页.pdf

(1215)赛迪译丛:《确保半导体供应链安全:一项国际合作的积极议程》-30页.pdf

2024-10-16

支持向量机的递归特征消除(USVM-RFE)诊断阿尔茨海默病Matlab代码.rar

支持向量机的递归特征消除(USVM-RFE)诊断阿尔茨海默病Matlab代码.rar

2024-10-10

使用 Simulink 控制 Wood and Berry 蒸馏塔.rar

使用 Simulink 控制 Wood and Berry 蒸馏塔.rar

2024-10-10

三体直至多体的运动,输入求解的物体数量以及各自的质量等参数Matlab代码.rar

三体直至多体的运动,输入求解的物体数量以及各自的质量等参数Matlab代码.rar

2024-10-10

全局敏感性和不确定性分析 - 置信度子轮廓框 (GSUA-CSB) Matlab工具箱.rar

全局敏感性和不确定性分析 - 置信度子轮廓框 (GSUA-CSB) Matlab工具箱.rar

2024-10-10

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除