【C++ 高阶数据结构】AVL树详解

1. AVL 树概念

🍎① 二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化单支树,查
找元素相当于在顺序表中搜索元素,效率低下

🍎② 因此,两位俄罗斯的数学家G.M.Adelson-Velskii和E.M.Landis (为什么叫 AVL 树呢 ? ----- 是从这两位科学家的姓名来的) 在1962年发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度。

🍎③ 一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:

  • Ⅰ、它的左右子树都是AVL树;
    Ⅱ、左右子树高度之差(简称平衡因子)的绝对值不超过1 (即:-1、0、1);

注意:
🐧a. 平衡因子不是 AVL树必须需要的,它只是 AVL 树的一种实现方式,平衡因子不是必须要维护的,在操作时也可以直接通过高度函数来算,只不过比较麻烦;

🐧b. 平衡因子 = 右子树的高度 - 左子树的高度。

在这里插入图片描述

结论: 如果一棵二叉搜索树是高度平衡的,它就是AVL树。如果它有n个结点,其高度可保持在 O ( l o g 2 n ) O(log_2 n) O(log2n) ,搜索时间复杂度O( l o g 2 n log_2 n log2n)。(注意,当 n = 3亿 的时候,二叉树的高度还不到 30,所以极大的提高了搜索效率)


2. AVL 树节点的定义

template<class K, class V>
struct AVLTreeNode {

	AVLTreeNode<K, V>* _left;
	AVLTreeNode<K, V>* _right;
	AVLTreeNode<K, V>* _parent;		// AVL树要定义节点的父亲,因为更新需要更新祖先的平衡因子

	pair<K, V> _kv;

	int _bf;	// 该节点的平衡因子


	//构造函数,以便初始化
	AVLTreeNode(const pair<K, V>& kv)
		: _left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _kv(kv)
		, _bf(0);	
	{}
};

3. AVL树的插入

🍎① AVL 树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。那么
AVL树的插入过程可以分为两步:

🐧Ⅰ. 按照二叉搜索树的方式插入新节点
🐧Ⅱ. 调整插入节点以及该节点的祖先节点的平衡因子

a. 插入父节点的左边,父节点的平衡因子 -1

b. 插入父节点的右边,父节点的平衡因子 +1

c. 父亲的平衡因子 == 0的时候,表示父亲所在子树的高度不变,不再需要往上更新,插入结束

d. 父亲平衡因子 == 1 or -1,父亲所在子树高度变了,继续往上更新;

e. 父亲平衡因子== 2 or -2,父亲所在的子树已经不平衡了,需要旋转处理

注意: ❗更新平衡因子的结束条件,要么是当前更新的父亲平衡因子等于0,要么是当前更新节点是根节点,根节点的父亲的平衡因子是不存在的(因为此时父亲节点为空),即为结束条件。

在这里插入图片描述

4. AVL树的旋转

🍎 如果在一棵原本是平衡的AVL树中插入一个新节点,可能造成不平衡,此时必须调整树的结构,使之平衡化。根据节点插入位置的不同,AVL树的旋转分为四种:



4.1 新节点插入较高左子树的左侧—左左:右单旋

🍎 ①右单旋:必须要 单纯的满足都是左子树比右子树高的情况 不能出现右子树比左子树高的情况

🍎 ②什么情况下使用右单旋呢 ?

在这里插入图片描述

在这里插入图片描述

	//右单旋
	void RotateR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;

		// 先稳定老大
		parent->_left = subLR;

		// 认新主人
		if (subLR)
			subLR->_parent = parent;

		// 将老大变成老二
		subL->_right = parent;

		// 因为 parent 可能是还有父节点的情况的
		Node* ppNode = parent->_parent;
		parent->_parent = subL;


		if (parent == _root)
		{
			_root = subL;
			subL->_parent = nullptr;
		}
		else
		{
			//判断 parent 是 ppNode的左孩子还是右孩子
			if (ppNode->_left == parent)
			{
				ppNode->_left = subL;
			}
			else
			{
				ppNode->_right = subL;
			}

			subL->_parent = ppNode;
		}

		// 将其平衡因子改变
		parent->_bf = subL->_bf = 0;
	}

4.2 新节点插入较高右子树的右侧—右右:左单旋

🍎 ① 什么情况下使用左单旋呢 ?

在这里插入图片描述


🍎 ② 注意:❗下面这种情况就不是左单旋,因为它不是单纯的右边高(它有左边高的情况

在这里插入图片描述


  • 以下是左单旋的例子:

在这里插入图片描述

	//左单旋
	void RotateL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;

		// 先稳定老大,给他派士兵
		parent->_right = subRL;

		if (subRL != nullptr)
			subRL->_parent = parent;

		// 老大变成老二
		subR->_left = parent;
		parent->_parent = subR;

		Node* ppNode = parent->_parent;

		if (parent == _root)
		{
			_root = subR;
			subR->_parent = nullptr;
		}
		else
		{
			// 判断 parent 节点是在 ppNode的右节点还是左节点
			if (ppNode->_right == parent)
			{
				ppNode->_right = subR;
			}
			else
			{
				ppNode->_left = subR;
			}
			subR->_parent = ppNode;
		}

		parent->_bf = subR->_bf = 0;
	}

4.3 新节点插入较高左子树的右侧—左右:先左单旋再右单旋

🍎 ① 大概的思路是将该二叉树变成满足完全右单旋的情况。

🍎 ② 什么情况下使用左右双旋呢 ?

在这里插入图片描述

在这里插入图片描述

// 先进行左单旋,再右单旋
void RotateLR(Node* parent)
{
	Node* subL = parent->_left;
	Node* subLR = subL->_right;

	// 旋转之前,保存subLR的平衡因子,旋转完成之后,需要根据该平衡因子来调整其他节点的平衡因子
	int bf = subLR->_bf;

	// 先对30进行左单旋
	RotateL(parent->_left);

	//  再对90进行右单旋
	RotateR(parent);


	// // 旋转之前,60的平衡因子可能是-1/0/1,旋转完成之后,根据情况对其他节点的平衡因子进行调整
	if (bf == -1)
	{
		subLR->_bf = 0;
		subL->_bf = 0;
		parent->_bf = 1;
	}
	else if (bf == 1)
	{
		subLR->_bf = 0;
		subL->_bf = -1;
		parent->_bf = 0;
	}
	else if (bf == 0)
	{
		subLR->_bf = 0;
		subL->_bf = 0;
		parent->_bf = 0;
	}
	else
	{
		assert(false);
	}
}
4.4 新节点插入较高右子树的左侧—右左:先右单旋再左单旋

🍎 ① 什么情况下使用右左双旋呢 ?

在这里插入图片描述

在这里插入图片描述

// 右左单旋
void RotateRL(Node* parent)
{
	Node* subR = parent->_right;
	Node* subRL = subR->_left;
	int bf = subRL->_bf;

	RotateR(subR);
	RotateL(parent);

	subRL->_bf = 0;
	if (bf == 1)
	{
		subR->_bf = 0;
		parent->_bf = -1;
	}
	else if (bf == -1)
	{
		parent->_bf = 0;
		subR->_bf = 1;
	}
	else
	{
		parent->_bf = 0;
		subR->_bf = 0;
	}
}

5. AVL树的性能

🐧🐧🐧 AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这样可以保证查询时高效的时间复杂度,即 l o g 2 ( N ) log_2 (N) log2(N)

🍎🍎🍎 但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如:插入(插入的时候 new 出节点也很消耗时间)时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,有可能一直要让旋转持续到根的位置。

因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变,意思就是不会插入新数据),可以考虑AVL树,但一个结构经常修改,就不太适合。

6. AVL树的面试题

  • 🍎① AVL树插入或者删除的时候,其旋转情况?

🐧Ⅰ、插入时,AVL树最多只需要旋转两次。

🐧Ⅱ、删除操作时,可能不止旋转两次,可能需要旋转多次,子树旋转后,其高度降低了一层,其上层可能也需要跟着旋转。

在这里插入图片描述

  • 42
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

未来可期LJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值