文章目录
1. 图像滤波的概念
-
🐧 尽可能将图像细节特征保留下来,对目标图像的噪声进行抑制。
-
🍎 图像中的噪声:随机的亮度或颜色干扰。
-
⚽ 根据空间滤波特性可分为:线性滤波和非线性滤波。
线性滤波:方框滤波、高斯滤波、均值滤波
非线性滤波:双边滤波、中值滤波
目的:使图像的视觉效果更好,不能破坏图像轮廓和边缘。
2. 方框滤波
- 🐧 代码
#include <iostream>
#include <opencv2/opencv.hpp>
using namespace std;
using namespace cv;
int main(int argc, char* argv[])
{
Mat target1, target2, target3, target4, target5;
Mat MatSource = imread("fish.jpg");
imshow("测试:原图像", MatSource);
// 方框滤波
boxFilter(MatSource, target1, MatSource.depth(), Size(2, 2), Point(-1, -1), false);
imshow("测试1:方框滤波图像", target1);
// 等待用户按键
waitKey(0);
return 0;
}
- 🐧 图片效果: