# Herding

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2037    Accepted Submission(s): 580

Problem Description
Little John is herding his father's cattles. As a lazy boy, he cannot tolerate chasing the cattles all the time to avoid unnecessary omission. Luckily, he notice that there were N trees in the meadow numbered from 1 to N, and calculated their cartesian coordinates (Xi, Yi). To herding his cattles safely, the easiest way is to connect some of the trees (with different numbers, of course) with fences, and the close region they formed would be herding area. Little John wants the area of this region to be as small as possible, and it could not be zero, of course.

Input
The first line contains the number of test cases T( T<=25 ). Following lines are the scenarios of each test case.
The first line of each test case contains one integer N( 1<=N<=100 ). The following N lines describe the coordinates of the trees. Each of these lines will contain two float numbers Xi and Yi( -1000<=Xi, Yi<=1000 ) representing the coordinates of the corresponding tree. The coordinates of the trees will not coincide with each other.

Output
For each test case, please output one number rounded to 2 digits after the decimal point representing the area of the smallest region. Or output "Impossible"(without quotations), if it do not exists such a region.

Sample Input
1
4
-1.00 0.00
0.00 -3.00
2.00 0.00
2.00 2.00

Sample Output
2.00

Source

#include <cstdio>
#include <cmath>
#include <iostream>
#include <cstring>
using namespace std;

struct tree
{
double x, y;
} T[110];
double area(double x0, double y0, double x1, double y1, double x2, double y2)
{
return fabs(x0 * y1 + x1 * y2 + x2 * y0 - x1 * y0 - x2 * y1 - x0 * y2) / 2;
}
int main()
{
int t, n;
scanf("%d", &t);
while(t--)
{
scanf("%d", &n);
for(int i = 0; i < n; i++) scanf("%lf%lf", &T[i].x, &T[i].y);
double Dmax = 999999999.0;
for(int i = 0; i < n; i++)      //枚举求最小面积
{
for(int j = i + 1; j < n; j++)
{
for(int k = j + 1; k < n; k++)
{
double Area = area(T[i].x, T[i].y, T[j].x, T[j].y, T[k].x, T[k].y);
if(Area) Dmax = min(Dmax, Area);    //将面积为0的舍去
}
}
}
if(Dmax != 999999999.0) printf("%.2lf\n", Dmax);
else printf("Impossible\n");
}
return 0;
}


#### HDU - 4709 Herding

2014-07-05 14:29:28

#### hdu 4709 Herding acm

2013-09-08 18:35:05

#### hdu 4709 Herding

2013-09-10 17:25:55

#### hdu 4709 Herding

2013-09-08 16:19:54

#### HDU 4709 Herding 解题报告

2013-09-12 09:39:06

#### hdu - 4709 - Herding

2013-09-09 00:13:38

#### HDU 4709：Herding

2016-05-01 19:53:31

#### hdu 4709 Herding (数学)

2014-11-23 19:32:26

#### HDU 4709 Herding 几何题解

2014-08-15 20:38:04

#### hdu 4709 - Herding【计算几何-三角形面积】

2015-08-19 15:29:15