UVA 10034 - Freckles

题目链接https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=975


题意:

给 n 个点,求最小生成树


分析:

我们需要将点转化为边,n 个点两两相连共有 n * ( n - 1 ) / 2 条边

然后用 Kruskal 算法求出最小生成树就行了


代码:

#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <iostream>
using namespace std;
const int MAXN = 5000;
int r[MAXN], u[MAXN], v[MAXN];
double w[MAXN], X[110], Y[110];
int p[110];
int n, m;
//两点间距离
double Distance(int x1, int y1, int x2, int y2)
{
    return sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2));
}
//间接排序,按边的长度将边的序号排序
int cmp(const int i, const int j)
{
    return w[i] < w[j];
}
//并查集的Find函数
int Find(int x)
{
    return p[x] == x ? x : p[x] = Find(p[x]);
}

double Kruskal()
{
    double ans = 0;
    for (int i = 0; i < n; i++) p[i] = i;       //初始化并查集
    for (int i = 0; i < m; i++) r[i] = i;       //初始化边序号
    sort(r, r + m, cmp);        //给边排序
    for (int i = 0; i < m; i++)
    {
        int e = r[i];           //找出当前边两个端点所在集合编号
        int x = Find(u[e]);
        int y = Find(v[e]);
        if (x != y)             //如果在不同集合,合并
        {
            ans += w[e];
            p[x] = y;
        }
    }
    return ans;
}

int main()
{
    int t;
    double x, y;
    scanf("%d", &t);
    while (t--)
    {
        scanf("%d", &n);
        m = 0;
        for (int i = 0; i < n; i++)         //读入点,计算边
        {
            scanf("%lf%lf", &X[i], &Y[i]);
            for (int j = 0; j < i; j++)
            {
                u[m] = i;
                v[m] = j;
                w[m++] = Distance(X[i], Y[i], X[j], Y[j]);
            }
        }

        printf("%.2lf\n", Kruskal());
        if (t)                  //两组数据间有一空行,否则WA,UVAoj目前没有PE
            printf("\n");
    }
    return 0;
}


阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/Houheshuai/article/details/50241993
个人分类: 图论 最小生成树
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭