1. 整数在内存中的存储
整数的二进制表示方法有三种:原码,反码,补码
三种表示方法都有符号位和数值位两部分:
符号位 0-“正” 1-“负”,数值位的最高位为符号位,其余为数值位。
而在计算机系统中,统一使用补码存储。
2. 大小端字节序以及字节序的判断
int main()
{
int a = 0x11223344;
return 0;
}
对其调试观察,我们发现:
在存储时,我们的a是倒着存储的--这是因为我们的vs采取的是小段字节序。
2.1 什么是大小端
其实超过⼀个字节的数据在内存中存储的时候,就有存储顺序的问题,按照不同的存储顺序,我们分 为⼤端字节序存储和⼩端字节序存储,下⾯是具体的概念:
⼤端(存储)模式:是指数据的低位字节内容保存在内存的⾼地址处,⽽数据的⾼位字节内容,保存 在内存的低地址处。
⼩端(存储)模式:是指数据的低位字节内容保存在内存的低地址处,⽽数据的⾼位字节内容,保存 在内存的⾼地址处。
注意:上文中0x11223344中的44为数据低位字节内容
2.2 如何判断大小端
i = 0x00000001
若为小端存储,则取地址(01 00 00 00)强转为char*再解引用得到的便是01
若为大端存储,则取地址(00 00 00 01)强转为char*再解引用得到的便是00
3. 浮点数在内存中的存储
3.1 找不同
#include <stdio.h>
int main()
{
int n = 9;
float* pFloat = (float*)&n;
printf("n的值为:%d\n", n);
printf("*pFloat的值为:%f\n", *pFloat);
*pFloat = 9.0;
printf("num的值为:%d\n", n);
printf("*pFloat的值为:%f\n", *pFloat);
return 0;
}
答案是什么捏?
答案就是!
那为什么捏?
3.2 浮点数的存储
上⾯的代码中, num 和 *pFloat 在内存中明明是同⼀个数,为什么浮点数和整数的解读结果会差别 这么⼤?
要理解这个结果,⼀定要搞懂浮点数在计算机内部的表⽰⽅法。
根据国际标准IEEE(电⽓和电⼦⼯程协会) 754,任意⼀个⼆进制浮点数V可以表⽰成下⾯的形式:
V = (−1) ∗ S M ∗ 2E • (−1)
- S 表⽰符号位,当S=0,V为正数;当S=1,V为负数
- M 表⽰有效数字,M是⼤于等于1,⼩于2的
- 2^E 表⽰指数位
举个栗子:
十进制的5.0,写成二进制为101.0,相当于1.01*10^2;
得出S=0 M=1.01 E=2。
十进制的-5.0,写成二进制为-101.0,相当于-1.01*10^2;
得出S=1 M=1.01 E=2。
IEEE 754规定:
对于32位的浮点数(float),最⾼的1位存储符号位S,接着的8位存储指数E,剩下的23位存储有效数字M
对于64位的浮点数(double),最⾼的1位存储符号位S,接着的11位存储指数E,剩下的52位存储有效数字M
3.2.1 浮点数储存的过程
IEEE 754对M和E还有一些特别的规定。
IEEE 754 规定,在计算机内部保存M时,默认这个数的第⼀位总是1,因此可以被舍去,只保存后⾯的 xxxxxx部分。⽐如保存1.01的时候,只保存01,等到读取的时候,再把第⼀位的1加上去。这样做的目的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,将第⼀位的1舍去以后,等于可以保存24位有效数字。
而对于E。
首先,E为一个无符号整数(unsigned int)
这意味着,如果E为8位,它的取值范围为0~255;如果E为11位,它的取值范围为0~2047。但是,我 们知道,科学计数法中的E是可以出现负数的,所以IEEE 754规定,存⼊内存时E的真实值必须再加上 ⼀个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。⽐如,2^10的E是 10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。
指数E从内存中取出还可以再分成三种情况:
E不全为0或不全为1
这时,浮点数就采⽤下⾯的规则表⽰,即指数E的计算值减去127(或1023),得到真实值,再将有效 数字M前加上第⼀位的1。
⽐如:0.5 的⼆进制形式为0.1,由于规定正数部分必须为1,即将⼩数点右移1位,则为1.0*2^(-1),其 阶码为-1+127(中间值)=126,表⽰为01111110,⽽尾数1.0去掉整数部分为0,补⻬0到23位 00000000000000000000000,则其⼆进制表⽰形式为:
0 01111110 00000000000000000000000
E全为0
这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,有效数字M不再加上第⼀位的1,⽽是还 原为0.xxxxxx的⼩数。这样做是为了表⽰±0,以及接近于0的很⼩的数字。
E全为1
这时,如果有效数字M全为0,表⽰±⽆穷⼤(正负取决于符号位s);