安装GPU版本的pytorch(解决pytorch安装时默认安装CPU版本的问题)保姆级教程

1、安装anaconda

anaconda官网:www.anaconda.com

在这里插入图片描述

2、修改下载源为清华源

由于pytorch的服务器在国外,直连下载的话很慢,所以选用清华镜像源下载

# 添加清华镜像
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
# 添加pytorch镜像
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
# for legacy win-64
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/peterjc123/
conda config --set show_channel_urls yes

3、创建虚拟环境

打开anaconda prompt
在>后面输入conda create -n Pytorch-env python==3.7

conda create -n Pytorch-env python==3.7

tips冷知识:无论是在安装Tensorflow2还是Pytorch等深度学习框架时,请务必注意你需要安装的函数库版本号与python版本的对应关系!!!
(这边建议选择python3.7或3.8的版本,不要问我为什么)

4、激活并进入你创建好的虚拟环境

conda activate Pytorch-env

现在正式开始进入pytorch的安装

5、anaconda指令安装pytorch

Pytorch官网:https://pytorch.org

在这里插入图片描述

复制图中红框的指令:conda install pytorch torchvision torchaudio cudatoolkit=10.2

!!!注意:不要全部复制:conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch-lts
需要删除-c后面的语句

主要是因为-c pytorch表示指定使用pytorch channel,这个服务器位于国外,下载速度很慢,使用刚刚添加进的清华镜像源可以得到一个较快的下载速度。

tips:解释一下

Stable:稳定版本
LTS:(Long Term Support)长期支持版本
Preview:预览版本

推荐使用Stable或者LTS版本

在anaconda prompt中鼠标右键粘贴复制指令,回车运行。

请添加图片描述

6、耐心等待

7、安装完成(但是问题来了!)

此时,你满心欢喜地进入Pycharm,设置好你的conda解释器,开始跑Pytorch的代码了。好的,首先让我检查一下Pytorch是否使用GPU加速:

import torch 
print(torch.cuda.is_available())

OMG!得到的答案是“False”!寄!

为什么呢?这是网上几乎所以人的安装方法,而他们跑出来却是“True”,作者一开始就是这样想的,明明安装都没有报错的。

于是又进入刚刚创建的虚拟环境中。。。

在你创建的“Pytorch-env”虚拟环境查看一下环境中所用的第三方库

conda list
请添加图片描述突然发现:我明明安装的是基于CUDA的GPU版本,为什么安装的pytorch 和 torchvision 都是CPU版本的???
请添加图片描述
请添加图片描述

tips:作者在此时经历了无数次卸载重装pytorch,结果都是一样的。

直到我发现了它:
请添加图片描述
问题就在这,安装pytorch时会默认安装这个cpuonly库,就是这个函数库导致我们安装的pytorch是CPU版本的。

解决方法:直接conda uninstall cpuonly
他会提示你当你卸载cpuonly后一些函数库的版本改变(其中就包括pytorch 和 torchvision)

在这里插入图片描述

等待安装,loading…

安装完成后,就可以看到pytorch 和 torchvision 都是 GPU 版本了
请添加图片描述这时候你再

import torch 
torch.cuda.is_available()

返回:“True” !

8、如果函数库中没有cpuonly怎么办?

还有一种情况我也见到过,就是你在输入conda list查看函数库,发现函数库中并没有cpuonly函数库,但我的pytorch还是cpu版本的那么该怎么办呢?

解决方法:conda install cpuonly
你先自行给它装上cpuonly函数库
然后,你再卸载它conda uninstall cpuonly

==
over ~

您好!要安装GPU版本PyTorch,您可以按照以下步骤进行操作: 1. 首先,确保您的计算机上已经安装了适当的GPU驱动程序。您可以通过访问GPU制造商的官方网站来获取最新的驱动程序并按照说明进行安装。 2. 接下来,您需要安装CUDA(Compute Unified Device Architecture),这是一个用于在GPU上运行计算任务的并行计算平台。您可以从NVIDIA官方网站下载并安装适合您GPU的CUDA版本。 3. 安装好CUDA后,您可以选择使用conda或pip来安装PyTorch。下面是两种方式的示例命令: 使用conda安装: ``` conda install pytorch torchvision torchaudio cudatoolkit=<CUDA版本号> -c pytorch ``` 使用pip安装: ``` pip install torch==<PyTorch版本号>+<CUDA版本号> torchvision torchaudio -f https://download.pytorch.org/whl/torch_stable.html ``` 请注意,将 `<CUDA版本号>` 替换为您在第二步中安装的CUDA版本号,并将 `<PyTorch版本号>` 替换为您想要安装PyTorch版本号(例如:1.9.0)。 4. 安装完成后,您可以通过导入PyTorch并运行一些示例代码来验证是否成功安装GPU版本PyTorch。例如: ```python import torch # 检查是否使用了GPU print(torch.cuda.is_available()) # 创建一个张量并将其移动到GPU上 x = torch.tensor([1, 2, 3]) x = x.to('cuda') # 输出张量 print(x) ``` 如果输出结果中显示了 `True`,则表示您已成功安装并配置了GPU版本PyTorch。 希望这些步骤对您有所帮助!如果您有任何其他问题,请随提问。
评论 64
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值