tensorboard 主要用法

tensorboard主要是用于记录训练过程中的各种参数,基本上可以把展现出所有的训练细节。对于改进模型的有着极大的益处。

from datetime import datetime
from tensorboardX import SummaryWriter

# TIMESTAMP用于新建一个文件夹,存储不同时间训练得到的结果
TIMESTAMP = "{0:%Y-%m-%dT%H-%M-%S/}".format(datetime.now())
tb_writer = SummaryWriter(logdir='./runs/'+TIMESTAMP)

主要有一下几个方法:

1、add_text
add_text(
            tag: str,
            text_string: str,
            global_step: Optional[int] = None,
            walltime: Optional[float] = None):

这个应该是在文本处理的用到的,但是可以用于记录本次训练所使用的超参数。
tb_writer.add_text(tag="super parameters", text_string=str(args),global_step=0)

2、add_scalar
add_scalar(
            self,
            tag: str,
            scalar_value: Union[float, numpy_compatible],
            global_step: Optional[int] = None,
            walltime: Optional[float] = None,
            display_name: Optional[str] = "",
            summary_description: Optional[str] = ""):

这个是主要的用到的函数,用于记录各种标量的变化。
tb_writer.add_scalar(tag="loss", scalar_value=total_loss/(i+1),global_step=epoch)
tb_writer.add_scalar(tag="lr", scalar_value=current_lr,global_step=epoch)

3、add_image
add_image(
            self,
            tag: str,
            img_tensor: numpy_compatible,
            global_step: Optional[int] = None,
            walltime: Optional[float] = None,
            dataformats: Optional[str] = 'CHW'):

img_tensor:形如[channel,height,width]uint8或者float数据。元素的范围在[0,1](float)或者[0,255](unit8)
这个函数能显示的东西非常的灵活,可以是卷积核,或者是得到的特征层,也能是对测试图片每一轮的预测结果。可以搭配torchvision.utils.make_grid()使用,也可以搭配plt.figure()使用,甚至可以利用“Grad-CAM”方法保存每次预测的热力图,实现对于关注点的迭代观测。相比起来,plt.figure()的使用更加灵活。

gred = make_grid(img,normalize=True,scale_each=True,nrow=4)
tb_writer.add_image(tag="val original images", img_tensor=gred)

4、add_histogram
add_histogram(
            self,
            tag: str,
            values: numpy_compatible,
            global_step: Optional[int] = None,
            bins: Optional[str] = 'tensorflow',
            walltime: Optional[float] = None,
            max_bins=None):

一般用于查看权重的直方图,检查训练过程中可能存在的问题。

tb_writer.add_histogram(tag="conv1",
                            values=model.conv1.weight,
                            global_step=epoch)
5、add_graph
def add_graph(
            self,
            model,
            input_to_model=None,
            verbose=False):

在使用的时候需要初始化一个输入,而且需要安装tensorboard,其他的函数则不依赖于tensorboard

完整代码如下:

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import torch.optim as optim
import torch.nn as nn
import math
import torch
import argparse
import torchvision.transforms.functional as F
from tensorboardX import SummaryWriter
from torchvision import datasets,transforms,models
from torchvision.utils import make_grid
from torch.utils.data import DataLoader
from datetime import datetime
from tqdm import tqdm

parser = argparse.ArgumentParser(description='Tensorboard Tutorial Demo Code')
parser.add_argument('-batch_size', '-b', type=int, help='batch size', default=32)
parser.add_argument('-cuda', '-g', type=int, help='cuda id', default=0)
parser.add_argument('-Epoch', '-e', type=int, default=5)

# learning rate
parser.add_argument('-lambda_lr', '-llr',type=str, default='cos_lr')
parser.add_argument('-learning_rate', '-lr', type=float, help='learning rate', default=1e-4)
parser.add_argument('-warm_up_epochs', '-w', type=int, help='warm up epoch for Cosine Schedule', default=1)
parser.add_argument('-weight_decay', '-wd', type=float, default=4e-5,
                    help='weight decay for Adam')
# dataset
parser.add_argument('-dataset_name', '-data', type=str, default='cifar10')
parser.add_argument('-img_size', '-is', type=int, default=32)
parser.add_argument('-crop_size', '-cs', type=int, default=28)

args = parser.parse_args()


transform = transforms.Compose(
        [transforms.Resize([32,32]),
         transforms.RandomResizedCrop([28,28]),
         transforms.RandomHorizontalFlip(),
         transforms.ToTensor(),
         transforms.Normalize(mean=[0.485, 0.456, 0.406],
                              std=[0.229, 0.224, 0.225])
         ])
CIFAR10 = datasets.CIFAR10(root='./cifar10', transform=transform)
data_loader = DataLoader(CIFAR10,batch_size=10,shuffle=True,num_workers=4)

model = models.resnet18(num_classes=10).cuda()

optimizier = optim.SGD(model.parameters(),lr=args.learning_rate,momentum=args.weight_decay)

warm_up_epochs = args.warm_up_epochs
warm_up_with_cosine_lr = lambda epoch:  (epoch+1) / warm_up_epochs if epoch < warm_up_epochs \
else  0.5 * ( math.cos((epoch - warm_up_epochs) /(args.Epoch - warm_up_epochs) * math.pi) + 1)

lr_scheduler = torch.optim.lr_scheduler.LambdaLR(optimizier,warm_up_with_cosine_lr)

criterion = nn.CrossEntropyLoss(label_smoothing=0.1).cuda()

TIMESTAMP = "{0:%Y-%m-%dT%H-%M-%S/}".format(datetime.now())
tb_writer = SummaryWriter(logdir='./runs/'+TIMESTAMP)
tb_writer.add_text(tag="super paramters", text_string=str(args),global_step=0)

# train
for epoch in range(args.Epoch):
    total_loss = 0
    length = len(data_loader)
    with tqdm(total=length,postfix=dict,mininterval=0.3) as pbar:
        for i,(img,label) in enumerate(data_loader):
            
            img,label = img.cuda(),label.cuda()
            output = model(img)
            
            loss = criterion(output,label)
            
            optimizier.zero_grad()
            loss.backward()
            optimizier.step()
            
            total_loss += loss.item()
            
            current_lr = optimizier.state_dict()['param_groups'][0]['lr']
            pbar.set_description(f'epoch:{epoch+1}/{args.Epoch}, iter:{i + 1}/{length}')
            pbar.set_postfix(**{'avg_loss': total_loss/(i+1),
                                'lr'        : current_lr})
            pbar.update(1)
        
        # tensorboard log
        tb_writer.add_scalar(tag="loss", scalar_value=total_loss/(i+1),global_step=epoch)
        tb_writer.add_scalar(tag="lr", scalar_value=current_lr,global_step=epoch)
        tb_writer.add_histogram(tag="conv1",
                            values=model.conv1.weight,
                            global_step=epoch)
        lr_scheduler.step()

# evaluate
transform_val = transforms.Compose(
        [transforms.Resize([32,32]),
         transforms.CenterCrop([28,28]),
         transforms.ToTensor(),
#         transforms.Normalize(mean=[0.485, 0.456, 0.406],
#                              std=[0.229, 0.224, 0.225])
         ])

CIFAR10_val = datasets.CIFAR10(root='./cifar10',train=False, transform=transform)
data_loader_val = DataLoader(CIFAR10_val,batch_size=8,shuffle=False,num_workers=4)

with torch.no_grad():
    model.eval()
    for img,label in data_loader_val:
        # add original images into tensorboard
        gred = make_grid(img,normalize=True,scale_each=True,nrow=4)
        tb_writer.add_image(tag="val original images", img_tensor=gred)
        tb_writer.close()
        
        img = F.normalize(img, mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225])
        img, label = img.cuda(),label.cuda()
        output = model(img)
        
        pred = torch.max(output,1)[1]
        
        
        break
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值