Tensorflow的可视化工具Tensorboard的使用——标量(scalar)的使用

从明天起,做一个幸福的人
喂马、劈柴,周游世界
从明天起,关心粮食和蔬菜
我有一所房子,面朝大海,春暖花开
--------致 海子
没有海子的浪漫,但有同样的情怀,祝福每一个人,愿意分享自己的学习成果。海子的明天,彼岸,我的今天,当下。今天分享对scalar的学习成果。
scalar是用来显示accuracy,cross entropy,dropout等标量变化趋势的函数。 通过scalar可以看到这些量随着训练加深的一个逐步变化的过程,进而可以看出我们模型的优劣。
注意:
1)scalar只能用于单个标量的显示,不能显示张量;
2)scalar可以显示多次训练的结果

  • 一、常规用法
    1)在要显示的标量下添加代码:
# 观察值
        correct_prediction = tf.equal(self.labels, tf.argmax(logits, 1))
        self.accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float'))
        print(correct_prediction)
        tf.summary.scalar('optimizer', self.accuracy)  # 记录优化器的变化

2)按照之前的介绍进行操作,打开IE中的tensorboard,就可以看到scalar:

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值