
np.select(condlist, choicelist, default=0)
condlist:条件列表,元素是布尔型数组
choicelist:列表,数组元素
default:当所有条件都不满足时,用default值(默认值)填上
注意: condlist, choicelist的长度必须一致,每一个条件都要进行一次元素选择或者操作
import pandas as pd
import numpy as np
df = pd.DataFrame(data={'语文':[50,90,70,78,60],
'数学':[59,80,60,75,69],
'英语':[61,95,65,80,59]},
index=['Harry','Andy','Rita','Lee','Jack'])
# 多条件判断,有多个条件可以使用np.select
conditions = [(df['语文']>=60)&(df['数学']>=60)&(df['英语']>=60),
(df['语文']<60)&(df['数学']>=60)&(df['英语']>=60),
(df['语文']>=60)&(df['数学']<60)&(df['英语']>=60),
(df['语文']>=60)&(df['数学']>=60)&(df['英语']<60),
(df['语文']>=60)&(df['数学']<60)&(df['英语']<60),
(df['语文']<60)&(df['数学']>=60)&(df['英语']<60),
(df['语文']<60)&(df['数学']<60)&(df['英语']>=60),
(df['语文']<60)&(df['数学']<60)&(df['英语']<60)]
results = ['合格','不合格','不合格','不合格','不合格','不合格','不合格','不合格']
# 生成'评级'字段
df['评级'] = np.select(conditions,results,default='不合格')
df