- 博客(141)
- 资源 (5)
- 收藏
- 关注
转载 【基础数学】先验、后验概率,似然,EM算法,ELBO(Evidence Lower Bound),多变量条件概率公式(多变量贝叶斯公式)
给定一个observation variable x(比如RGB图片)和latent variable z (比如是RGB图片经过encoder得到的latent feature),假设我们想学习后验概率,但发现在实际中不易或不能求解,那么该如何求解这个后验概率?
2023-10-17 15:32:35 6892
转载 【基础数学】向量的内积外积哈达玛积
从代数角度看,先对两个数字序列中的每组对应元素求积,再对所有积求和,结果即为点积。从几何角度看,点积则是两个向量的长度与它们夹角余弦的积。在三维几何中,向量a和向量b的外积结果是一个向量,有个更通俗易懂的叫法是法向量,该向量垂直于a和b向量构成的平面。在二维空间中,外积还有另外一个几何意义就是:|a×b|在数值上等于由向量a和向量b构成的平行四边形的面积。3.向量的哈达玛积两个相同形状的矩阵,输出是具有同样形状的、各个位置的元素等于两个输入矩阵相同位置元素的乘积的矩阵。
2023-09-30 23:01:56 467
原创 【Torch API】pytorch 中repeat_interleave函数详解
【代码】【Torch API】pytorch 中repeat_interleave函数详解。
2023-08-29 23:47:13 702
转载 【概率分布】泊松分布(Poisson Distribution)
现实生活多数服从于泊松分布假设你在一个呼叫中心工作,一天里你大概会接到多少个电话?它可以是任何一个数字。现在,呼叫中心一天的呼叫总数可以用泊松分布来建模。医院在一天内录制的紧急电话的数量。某个地区在一天内报告的失窃的数量。在一小时内抵达沙龙的客户人数。书中每一页打印错误的数量。泊松分布适用于在随机时间和空间上发生事件的情况,其中,我们只关注事件发生的次数。当以下假设有效时,则称为泊松分布任何一个成功的事件都不应该影响另一个成功的事件。在短时间内成功的概率必须等于在更长的间内成功的概率。
2023-06-27 21:55:39 7120
原创 【Torch API】pytorch 中bincount()函数详解
函数通常用于统计离散值的出现次数,如图中节点的批次信息、类别标签等。它可以帮助我们快速计算每个值的计数,而无需手动编写循环或其他复杂的逻辑。是 PyTorch 中的函数,用于计算给定整数张量中每个值的出现次数。它返回一个张量,其中的每个元素表示输入张量中对应索引值出现的次数。函数计算了每个值出现的次数,并返回了一个张量。在这个示例中,我们传入了一个整数张量。,其中的每个元素表示对应值出现的次数。以下是一个简单的示例,展示了。,其中包含了一些离散的值。
2023-06-19 10:57:47 3994 1
转载 【PyG】DATA(torch_geometric.data.Data )之学习
在Data里包含了样本的 label,这意味和 PyTorch 稍有不同,在PyTorch中,我们重写Dataset的__getitem__(),根据 index 返回对应的样本和 label;在 PyG 中,我们使用的不是这种写法,而是在get()函数中根据 index 返回torch_geometric.data.Data类型的数据,在Data里包含了数据和 label;在实际的应用场景中,图的形式多种多样,单纯的使用 x 和 edge index 是无法描述这众多的图结构的;存储节点的坐标,形状是。
2023-06-19 10:16:32 712
原创 【Torch API】pytorch 中index_add()函数详解
在本例中,指定了 index=torch.tensor([0, 2]),因此 src 的第一行(全为 1)会被加到 t 的第一行,第二行(同样全为 1)会被加到 t 的第三行。在本例中,我们要将 src 张量添加到 t 的第 0 行和第 2 行,因此设置 index=torch.tensor([0, 2])。在本例中,我们要将 src 张量添加到由 index 张量指定的 t 张量的行上,因此设置 dim=0。src:要添加到 t 的张量。在本例中,src 是一个全部为 1 的张量,形状为 (2, 4)。
2023-06-08 21:02:49 1037
转载 【Torch API】pytorch 中meshgrid()函数详解
2)其中第一个输出张量填充第一个输入张量中的元素,各行元素相同;第二个输出张量填充第二个输入张量中的元素各列元素相同。2)其中第一个输出张量填充第一个输入张量中的元素,各行元素相同;第二个输出张量填充第二个输入张量中的元素各列元素相同。输出两个tensor(tensor行数为第一个输入张量的元素个数,列数为第二个输入张量的元素个数)输出两个tensor(tensor行数为第一个输入张量的元素个数,列数为第二个输入张量的元素个数)分类专栏: 解决方案 文章标签: python。
2023-05-16 17:37:22 1992
转载 【Torch API】pytorch 中register_buffer()函数详解
成员变量:不更新,但是不算是模型中的参数(model.state_dict())通过register_buffer()登记过的张量:会自动成为模型中的参数,随着模型移动(gpu/cpu)而移动,但是不会随着梯度进行更新。
2023-05-16 10:01:12 5257
转载 【Torch API】pytorch 中index_copy_函数详解
index_copy_按照index索引,将Tensor的元素复制到张量中。是指被复制的张量 ,如例子中是一个。里面包含了需要被插入的值, 如。
2023-05-15 10:04:14 712
转载 【Torch API】pytorch 中torch.narrow()、torch.unbind()函数详解
PyTorch 中的narrow()函数起到了筛选一定维度上的数据作用。个人感觉与x[begin:end] 相同!参考官网:torch.narrow()用法:torch.narrow(input, dim, start, length) → Tensor返回输入张量的切片操作结果。输入tensor和返回的tensor共享内存。
2023-04-27 20:10:44 497
转载 【Torch API】pytorch 中torch.cumsum函数详解
返回输入沿指定维度的累积和。例如,如果输入是一个N元向量,则结果也是一个N元向量,第i 个输出元素值为 yi=x1+x2+x3+…
2023-04-27 19:23:06 826
转载 【Torch API】pytorch 中torch.randint()函数详解
device ( torch.device, optional) – 返回张量的所需设备。默认值:如果None,则使用当前设备作为默认张量类型(请参阅torch.set_default_tensor_type())。dtype ( torch.dtype , optional) – 如果是None,这个函数返回一个带有 dtype 的张量torch.int64。默认值:False。layout ( torch.layout, optional) – 返回张量的所需布局。默认值:torch.strided。
2023-04-27 16:20:02 2338
转载 【Torch API】pytorch 中masked_fill()函数详解
必须是一个 ByteTensor ,shape必须和 a一样,且元素只能是 0或者1 ,是将 mask中为1的 元素所在的索引,在a中相同的的索引处替换为 value ,mask value必须同为tensor。
2023-03-27 22:51:09 1757
转载 【Torch API】pytorch 中torch.ones_like和torch.zeros_like函数详解
pytorch 中torch.ones_like和torch.zero_like函数详解
2023-03-17 15:48:13 613
转载 【Torch tensor】torch.Tensor、numpy.ndarray、list三者之间的相互转换
【代码】【Torch tensor】torch.Tensor、numpy.ndarray、list三者之间的相互转换。
2023-03-17 10:38:01 653
转载 【Torch API】pytorch中的torch.mm(),torch.bmm(),torch.matmul() 函数详解
pytorch中的torch.mm(),torch.bmm(),torch.matmul() 函数详解
2023-02-07 18:21:50 401
模式识别-北工-李玉鑑
2018-10-14
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人