代码随想录算法训练营第四十九天(动态规划篇)| 474. 一和零, 完全背包理论基础

本文介绍了如何使用动态规划方法解决01背包问题和完全背包问题,包括定义dp数组、递推公式、初始条件以及两种背包问题的遍历顺序差异。通过实例演示了如何计算给定物品下,满足特定0和1数量限制的最大装填数量。
摘要由CSDN通过智能技术生成

474. 一和零

题目链接:https://leetcode.cn/problems/ones-and-zeroes/submissions/501607337/

思路

之前的背包问题中,我们对背包的限制是容量,即每个背包装的物品的重量和不超过给定容量,这道题的限制是0和1的个数,因此这个背包是二维m和n,最多可以装m个0和n个1。数组中的每个元素都是一个物体,包含若干个0和1。

1. dp数组定义

dp[i][j]: 最多装i个0和j个1的背包最多能装dp[i][j]个物体。

2. 递推公式

遍历每个物体,这个物体有x个0和y个1,我们选择装或者不装这个物体。如果不装它,那么背包中的物体保持原样,如果装它,就要为它腾出相应的0和1的位置,腾出后背包能最多装dp[i-x][j-y]个物体,再加上当前物体,即dp[i-x][j-y]+1,因此递推公式为:

dp[i][j] = max(dp[i][j], dp[i-x][j-y]+1)

3. 初始条件

01背包的dp数组初始化为0就可以。

4. 遍历顺序

外层遍历物体,内层分别遍历背包容量的两个维度,且倒序遍历。在下面的文章中讲过具体细节:代码随想录算法训练营第四十六天(动态规划篇)|01背包(滚动数组方法)-CSDN博客

5. 举例推导dp数组

以输入:["10","0001","111001","1","0"],m = 3,n = 3为例

最后dp数组的状态如下所示:

代码实现

class Solution(object):
    def findMaxForm(self, strs, m, n):  # m个0,n个1
        dp = [[0]*(n+1) for _ in range(m+1)]
       # zeros, ones = 0, 0
        for s in strs:
            zeros = s.count('0')
            ones = s.count('1')
            for i in range(m, zeros-1, -1):
                for j in range(n, ones-1, -1):
                    dp[i][j] = max(dp[i][j], dp[i-zeros][j-ones]+1)
        return dp[m][n]

完全背包理论基础

题目链接:题目页面

思路

完全背包允许物体被重复放入,它的代码与01背包的区别在于遍历顺序。01背包对内部容量的循环是从大到小遍历,为了保证每个物品仅被添加一次。而完全背包的物品是可以添加多次的,所以要从小到大去遍历。

代码实现

N, V = map(int, input().split())
weight, value = [0]*N,[0]*N
for i in range(N):
    weight[i], value[i] = map(int,input().split())

dp = [0]*(V+1)
for i in range(N):
    for j in range(weight[i], V+1):
        dp[j] = max(dp[j], dp[j-weight[i]] + value[i])
print(dp[j])

  • 3
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值