题目的大致描述:给出一个n个点,m条边的无向图,求图的割点。
个人说不清楚,放几个图吧
代码如下:
vector<int>G[100005];
int sccindex=0,low[100005],dfn[100005];
bool vis[100005],gd[100005];
int ans=0;
void tarjan(int v,int fa)//其实这题使用的并不是原版的tarjan而是做了一些改动
{
low[v]=dfn[v]=++sccindex;vis[v]=true;//这个点现在查找过
int son=0;
for(auto i=G[v].begin();i!=G[v].end();i++) {//查找该点可以到达的点
if(vis[*i]&&*i!=fa)low[v]=min(low[v],dfn[*i]);//如果这个点已经到过并且*i不是v的父节点就不是割点,只需要做low更新处理
else if(!dfn[*i]){
tarjan(*i,v);//如果该点未到达就搜索,v作为*i的父节点传递
son++;//u的孩子数增加
low[v]=min(low[v],low[*i]);//更新low
if(fa==-1&&son>1||fa!=-1&&dfn[v]<=low[*i]){//如果该点是根节点并且孩子数大于1,或者该点并不是根节点但是dfn[u]<=low[v],
// 也就是说他的子节点回溯最多只能到达他本身的话,这个点就是根节点
if(!gd[v])ans++,gd[v]=true;//ans记录割点的数量,gd记录一个点是否为割点
}
}
}
vis[v]=2;//这里其实可加可不加,但是这样做循环次数会变少。
}
主函数中调用如下:
for(i=1;i<=n;i++)
if(!dfn[i])
tarjan(i,-1);//根节点父亲为-1