割点
连通图中删去改点后,剩余的图变得不再连通,那么被删去的点就是割点,求解无向图中的割点我们可以使用tarjan算法在一次DFS内解决。
按照我的理解tarjan算法的思想实际上就是点标号,这里点有两种标号,分别是dfn表示第一次遍历时的标号,而low则将同一个环上的点标成相同的号,在DFS 过程中如果图中存在环,那么一定存在某个时刻,一个点会遍历到dfn小于自己的点,那么在返回的时候,我们将所有环上的点的low值都设置成发现环的那个点的dfn的值,low值小于自身dfn值的点,一定存在于某个环中,只有dfn==low值的点才是割点,当然low值在初始化时就是dfn的值,所以low值不会小于dfn的值。
这样我们在跟新一个点x的low值时,实际上就是更新从x的子节点可以搜索到的所有点的dfn值最小值。
例题
#include<bits/stdc++.h>
using namespace std;
const int N=20010;
const int M=200010;
int edge[M];
int nest[M];
int last[N];
int cnt=1;
void add(int u,int v){
edge[cnt]=v;
nest[cnt]=last[u];
last[u]=cnt;
cnt++;
return;
}
//一遍DFS求割点、割边
int dfn[N];
int low[N];
int id=1;
bool cut[N];
int r;
void dfs(int k){
dfn[k]=low[k]=id++;
int count=0;
for(int i=last[k];i;i=nest[i]){
if(!<