割边+割点tarjan算法

本文介绍了如何利用Tarjan算法在无向图中寻找割点。割点是指删除后导致图不连通的节点。在DFS过程中,通过dfn和low值判断节点是否为割点。此外,还探讨了割边的定义,以及在存在重边的情况下,如何调整算法以避免误判。提供了解决割边问题的两种策略。
摘要由CSDN通过智能技术生成

割点

  连通图中删去改点后,剩余的图变得不再连通,那么被删去的点就是割点,求解无向图中的割点我们可以使用tarjan算法在一次DFS内解决。
  按照我的理解tarjan算法的思想实际上就是点标号,这里点有两种标号,分别是dfn表示第一次遍历时的标号,而low则将同一个环上的点标成相同的号,在DFS 过程中如果图中存在环,那么一定存在某个时刻,一个点会遍历到dfn小于自己的点,那么在返回的时候,我们将所有环上的点的low值都设置成发现环的那个点的dfn的值,low值小于自身dfn值的点,一定存在于某个环中,只有dfn==low值的点才是割点,当然low值在初始化时就是dfn的值,所以low值不会小于dfn的值。
  这样我们在跟新一个点x的low值时,实际上就是更新从x的子节点可以搜索到的所有点的dfn值最小值。

例题

割点模板题

#include<bits/stdc++.h>
using namespace std;

const int N=20010;
const int M=200010;
int edge[M];
int nest[M];
int last[N];
int cnt=1;

void add(int u,int v){
   
	edge[cnt]=v;
	nest[cnt]=last[u];
	last[u]=cnt;
	cnt++;
	return;
}

//一遍DFS求割点、割边
int dfn[N];
int low[N];
int id=1;
bool cut[N];
int r;
void dfs(int k){
   
	dfn[k]=low[k]=id++;
	int count=0; 
	for(int i=last[k];i;i=nest[i]){
   
		if(!<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值