A.
注意到是全部放在黑格或者全部放在白格就可以,那就暴力枚举呗。把棋子按位置排序之后依次放在最左边空着的格子上统计一下就OK了。
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<set>
#include<cmath>
using namespace std;
int main()
{
int n,i,j,k;
cin>>n;set<int>s1,s2;
for(i=1;i<n;i+=2)
s1.insert(i),s2.insert(i+1);
int ans1=0,ans2=0;int num[105];
for(i=1;i<=n/2;i++){
scanf("%d",&num[i]);
}
sort(num+1,num+1+n/2);
for(i=1;i<=n/2;i++){
int k=*s1.begin();s1.erase(s1.begin());
ans1+=abs(k-num[i]);
k=*s2.begin();s2.erase(s2.begin());
ans2+=abs(k-num[i]);
}
cout<<min(ans1,ans2)<<endl;
return 0;
}
B.
暴力统计每一行中的开关对应的所有灯是否都至少被两个不同的开关控制即可。
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<string>
#include<vector>
using namespace std;
vector<int>G[2005];
int cnt[2005];
int main()
{
int n,m,i,j,k;
cin>>n>>m;getchar();string str;
for(i=1;i<=n;i++){
getline(cin,str);
for(j=0;j<m;j++){
if(str[j]=='1'){
cnt[j+1]++;G[i].push_back(j+1);
}
}
}
for(i=1;i<=n;i++){
bool isok=true;
for(auto a:G[i]){
if(cnt[a]<2){
isok=false;break;
}
}
if(isok){
puts("YES");return 0;
}
}
puts("NO");
return 0;
}
C.
这是一个需要小心思考的xjb贪的贪心题。因为最短的那块木板一定是某个桶i的容量,而最大的桶容量又不能大于Vi+l,所以所有桶的容量都必然是在Vi~Vi+l里面产生。接下来考虑如何产生最大的容量值。我们当然希望在这个区间内取尽可能大的数来当做木桶的容量(剩下的木板从大于Vi+l的木板里面随便挑就行),但是如果这个区间中的木板多于n块,那么为了总的容量值最大,我们必然把最短的那些木板k块一组凑一个桶(大于n不够n+k时就把多余的最小的那些凑一起就好了)。
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
typedef long long ll;
ll len[1000005];
int main()
{
int n,k,l,i,j;
cin>>n>>k>>l;
for(i=1;i<=n*k;i++){
scanf("%lld",&len[i]);
}
sort(len+1,len+1+n*k);ll up=len[1]+l;
int pos=upper_bound(len+1,len+1+n*k,up)-len-1;
if(pos<n){
cout<<0<<endl;return 0;
}
ll ans=0;
for(int i=1,cnt=1;i<=pos;){
if(pos-(i+k-1)>=n-cnt){
ans+=len[i];i+=k;cnt++;
}
else{
ans+=len[i];
for(j=pos;j>=pos-(n-cnt)+1;j--)
ans+=len[j];
cout<<ans<<endl;return 0;
}
}
cout<<ans<<endl;
return 0;
}
E.
题意:一串数总共n个,分成任意你想要的组数,但是每组里至少要有k个数,而且每组中最大最小的差值不能大于d,问是否可能。
先排个序,然后我们每次只判断以这一位为某一盒子中最大的一个
在这一位的前第k位(大)到前相差不大于d(小)的最小一位,这个区间中有一个yes则这一位为yes,没有则为no。因为区间中如果有一个值为yes,那么从那个数开始到当前数即可构成一个符合要求的区间。
如果最后一位为yes则最终答案为yes,我们不关心具体是怎么分的,只关心能否分出来。
整体过程可以用一个单调队列来搞。
#include<cstdio>
#include<iostream>
#include<queue>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=5e5+100;
int n,k,d,i,j,num[N];
queue <int> que;
bool f[N];
int main()
{
cin>>n>>k>>d;
for(i=1;i<=n;i++)scanf("%d",&num[i]);
sort(num+1,num+1+n);f[0]=true;//注意0设为true,不然后面推不了
for(i=k;i<=n;i++){
if(f[i-k])que.push(i-k);//这里是i-k而不是i-k+1,因为队列中应该保存的是可以作为之前区间右端点的点
//否则的话可能会出现上一个区间个数不足k的问题
while(!que.empty()&&num[i]-num[que.front()+1]>d)que.pop();//
//num[i]-num[que.front()]
if(!que.empty())
f[i]=true;
}
cout<<(f[n]?"YES":"NO")<<endl;
return 0;
}