传送
题目大意:给你一个数n,和H,将n分解成多个数的和,将这些数排成一个序列。但是有以下要求第一个数一定小于H,相邻两个数的差的绝对值小于1,求这样的序列最小的长度。
要使序列长度最小,很明显要使maxh尽量大,简单说明就是h越大会减少其它的拆分。
因此总结出,长度最小的话有如图:
两种情况。
序列先严格增后严格减或严格减。最后如果有剩余,尽量填充到maxh高度。
最后,二分maxh即可
#include<bits/stdc++.h>
#define ll unsigned long long
using namespace std;
ll n,h;
bool judge(ll x)
{
ll k=min(x,h);
ll sum=x*x-(k-1)*k/2;
if(sum<=n)return true;
return false;
}
int main()
{
cin>>n>>h;
ll maxh;
ll l=1,r;r=2e9;
while(l<=r)
{
ll m=(l+r)>>1;
if(judge(m))
l=m+1;
else
r=m-1;
}
ll k=min(r,h);
ll cnt=r*r-(k-1)*k/2;
cout<<(ll)(ceil(1.0*(n-cnt)/r)+2*r-1-(k-1))<<endl;
return 0;
}