二维树状数组(模板,单点更新区间求和)

本文介绍了二维树状数组的基本操作,包括如何在坐标(x, y)处进行单点更新(增加数值v)以及查询从(0, 0)到(x, y)的区间内所有数的和。同时,通过容斥原理探讨了计算指定区域(x, y)左上角到(xx, yy)右下角所有数之和的方法。" 133945037,2103967,鸿蒙应用开发:组件状态管理详解,"['鸿蒙开发', 'HarmonyOS', '组件管理']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

updata:在(x,y)处加上v
query:区间(0,0)到(x,y)的所有数之和
sum:容斥原理求区间所有数之和,(x,y)左上角,(xx,yy)右下角。坐标是从左往右,从上往下增大。

int N;
int c[maxn][maxn];
inline int lowbit(int t)
{
    return t&(-t);
}
void update(int x,int y,int v)
{
    for (int i=x; i<=N; i+=lowbit(i))
        for (int j=y; j<=N; j+=lowbit(j))
            c[i][j]+=v;
}
int query(int x,int y)
{
    int s=0;
    for (int i=x; i>0; i-=lowbit(i))
        for (int j=y; j>0; j-=lowbit(j))
            s+=c[i][j];
    return s;
}
int sum(int x,int y,int xx,int yy)
{
    x--,y--;
    return query(xx,yy)-query(xx,y)-query(x,yy)+query(x,y);
}
<think>嗯,用户让我讲解Python蓝桥杯中线段树和树状数组的内。首先,我需要确定用户的基础。蓝桥杯参赛者通常可能有一定的算法基础,但可能对这两个数据结构不太熟悉。用户提到的是Python实现,所以要注意Python的特性和限制。 线段树和树状数组都是处理区间查询和更新的高效数据结构。用户可能在蓝桥杯中遇到相关问题,比如区间求和、最值,或者动态更新后的查询问题。需要先分别介绍两者的基本概念、适用场景,然后给出Python的实现示例,并比较它们的优缺点。 先想线段树。线段树是二叉树结构,每个节点代表一个区间。适合处理各种区间操作,比如求和、最大值、最小值,或者更复杂的操作。但实现起来相对复杂,尤其是Python中因为递归深度和数组实现的差异,需要注意。 树状数组(Fenwick Tree)则更简洁,主要处理前缀和相关的操作,比如前缀求和,然后可以通过前缀和的差来得到区间和。但功能相对线段树较少,主要针对点更新和前缀查询,但代码简单,效率高。 接下来要考虑用户的需求,他们可能需要快速掌握这两个结构的实现和应用场景。所以需要分别讲解结构、原理、适用问题,然后给出代码模板,并指出常见考点和易错点。 比如线段树的建树、查询、更新操作,递归实现需要注意的终止条件、区间分割。Python中可能会遇到递归深度的问题,尤其是区间较大时,但蓝桥杯的题目通常数据规模可能不会太大,所以递归实现还是可行的。 树状数组的重点是lowbit的计算,以及更新和查询的过程。要解释清楚如何利用二进制特性来高效处理前缀和。 还需要比较两者的区别,比如树状数组只能处理前缀和相关的,而线段树更灵活,但代码复杂。树状数组更新和查询时间复杂度都是O(logn),线段树也是O(logn)但常数更大。 可能用户在实际解题中,需要根据题目需求选择合适的数据结构。例如,单点更新区间求和树状数组更简单;而涉及区间修改或者复杂查询(如区间最大值)则用线段树。 在编写代码示例时,要注意Python的语法,比如线段树的实现可以用类,用数组或字典来存储节点,或者递归构建。而树状数组的实现通常用数组,并实现lowbit函数。 可能需要注意Python中列表索引从0开始的问题,在树状数组中通常会从1开始索引,这样方便计算。所以在代码中处理输入数据时可能需要调整。 最后,提醒用户常见的考点,比如如何构造线段树的节点,处理区间更新时的延迟标记(如果有必要的话),但蓝桥杯的题目可能不会太复杂,可能只需要基础的线段树应用。 总结回答的结构:先介绍两种数据结构,分别说明原理、应用场景、Python实现,然后比较优缺点,最后给出选择建议和备考提示。</think>在蓝桥杯算法竞赛中,线段树和树状数组是处理**区间查询/修改问题**的高效数据结构。以下是它们的核心知识点和Python实现指南: --- ### 一、线段树(Segment Tree) #### 1. 核心原理 - **二叉树结构**,每个节点存储一个区间的统计值(如和、最大值) - 适合处理**区间更新区间查询**(如区间求和、最值、动态修改) - 时间复杂度:建树$O(n)$,查询/修改$O(\log n)$ #### 2. Python实现模板 ```python class SegmentTree: def __init__(self, data): self.n = len(data) self.tree = [0] * (4 * self.n) # 开4倍空间 self.build(0, 0, self.n-1, data) def build(self, node, l, r, data): if l == r: self.tree[node] = data[l] return mid = (l + r) // 2 self.build(2*node+1, l, mid, data) self.build(2*node+2, mid+1, r, data) self.tree[node] = self.tree[2*node+1] + self.tree[2*node+2] # 以区间和为例 def update(self, node, l, r, idx, value): if l == r: self.tree[node] = value return mid = (l + r) // 2 if idx <= mid: self.update(2*node+1, l, mid, idx, value) else: self.update(2*node+2, mid+1, r, idx, value) self.tree[node] = self.tree[2*node+1] + self.tree[2*node+2] def query(self, node, l, r, ql, qr): if qr < l or ql > r: return 0 if ql <= l and r <= qr: return self.tree[node] mid = (l + r) // 2 return self.query(2*node+1, l, mid, ql, qr) + self.query(2*node+2, mid+1, r, ql, qr) ``` #### 3. 应用场景 - 区间求和/最值 - 区间乘法修改 - 二维区间问题(难度较高) --- ### 二、树状数组(Fenwick Tree) #### 1. 核心原理 - 基于**二进制索引**的高效结构 - 专精**前缀和操作**,通过差分处理区间和 - 时间复杂度:更新/查询$O(\log n)$ #### 2. Python实现模板 ```python class FenwickTree: def __init__(self, size): self.n = size self.tree = [0] * (self.n + 1) # 下标从1开始 def lowbit(self, x): return x & (-x) def update(self, idx, delta): while idx <= self.n: self.tree[idx] += delta idx += self.lowbit(idx) def query(self, idx): res = 0 while idx > 0: res += self.tree[idx] idx -= self.lowbit(idx) return res # 求区间和 [l, r] def range_query(self, l, r): return self.query(r) - self.query(l-1) ``` #### 3. 应用场景 -
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值