Brave Game --- 博弈 SG函数 记录

本文介绍了《勇敢者的游戏》这部电影中所体现的计算机科学概念,并通过一个二人博弈问题来阐述游戏策略。文章详细解析了SG函数在求解此类问题中的应用,展示了如何使用递归算法计算最优策略。同时,代码示例展示了如何实现SG函数,以确定先手是否必胜。此外,文中强调了诚信在考试中的重要性,鼓励学生们展示真实水平。
摘要由CSDN通过智能技术生成

Problem Description
十年前读大学的时候,中国每年都要从国外引进一些电影大片,其中有一部电影就叫《勇敢者的游戏》(英文名称:Zathura),一直到现在,我依然对于电影中的部分电脑特技印象深刻。
今天,大家选择上机考试,就是一种勇敢(brave)的选择;这个短学期,我们讲的是博弈(game)专题;所以,大家现在玩的也是“勇敢者的游戏”,这也是我命名这个题目的原因。
当然,除了“勇敢”,我还希望看到“诚信”,无论考试成绩如何,希望看到的都是一个真实的结果,我也相信大家一定能做到的~
各位勇敢者要玩的第一个游戏是什么呢?很简单,它是这样定义的:
1、 本游戏是一个二人游戏;
2、 有一堆石子一共有n个;
3、 两人轮流进行;
4、 每走一步可以取走1…m个石子;
5、 最先取光石子的一方为胜;
如果游戏的双方使用的都是最优策略,请输出哪个人能赢。

Input
输入数据首先包含一个正整数C(C<=100),表示有C组测试数据。
每组测试数据占一行,包含两个整数n和m(1<=n,m<=1000),n和m的含义见题目描述。

Output
如果先走的人能赢,请输出“first”,否则请输出“second”,每个实例的输出占一行。

Sample Input
2
23 2
4 3

Sample Output
first
second

SG函数:
x节点的SG值是去除X的后继节点的SG值后的最小的非负整数。

以题中第二组数据为例
0:没有后继节点,SG值为最小非负整数,0;
1:后继节点为0,SG值为去除0(SG(0)的值,下面同理)以外的最小非负整数,1;
2:后继节点为0和1,SG值为去除0和1以外的最小非负整数,2;
3:后继节点为0和1和2,SG值为去除0和1和2以外的最小非负整数,3;
4:后继节点为3和2和1,SG值为去除3和2和1以为的最小非负整数,0;
在这里插入图片描述

#include<bits/stdc++.h>
using namespace std;

int c, n, m;
int f[1005];  // 存放sg值

int sg(int p) {  // p: 剩余牌数
	int t = 0, g[1005] = {0};  // g数组用来标记后继节点的SG值,注意要初始化为0
	for(int i = 1;i <= m; i++) {  // 遍历可取牌的数量
		t = p - i;  // t: 后继节点值
		if(t < 0)	break;
		if(f[t] == -1)	f[t] = sg(t);  // 搜索后记节点的SG值
		g[f[t]] = 1;  // 标记后继节点的SG值
	}
	for(int i = 0;; i++) {  // 从左往右遍历,注意从0开始,因为可以剩余0张牌
		if(!g[i])	return i;   // 如果某个值为0,说明最小的非负整数就是该值
	}
}
 
int main() {
	scanf("%d", &c);
	while(c--) {
		memset(f, -1, sizeof(f));
		scanf("%d %d", &n, &m);
		int res = sg(n);
		if(res)	printf("first\n");
		else printf("second\n");
	} 
	return 0;
}

sg值函数部分示意图
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值