总说
我们知道,pytorch一般情况下,是将网络中的参数保存成OrderedDict形式的。这里额参数其实包括2种。一种是模型中各种 module含的参数,即nn.Parameter
,我们当然可以在网络中定义其他的nn.Parameter
参数。;另外一种是buffer。前者每次optim.step
会得到更新,而不会更新后者。
例子
class myModel(nn.Module):
def __init__(self, kernel_size=3):
super(Depth_guided1, self).__init__()
self.kernel_size = kernel_size
self.back_end = torch.nn.Sequential(
torch.nn.Conv2d(3, 32,