Description
Lian是一个喜欢看动画片的人,自从成为ACMer(ACM爱好者)之后,他又迷上了网上做题。做题让他快乐,不过这也是需要付出精力的!!
假设有n道题,Lian做出第i道题后,他可以获得的快乐指数将增加gethappy[i],而消耗掉的精力将是losspow[i]。
假设Lian初始的快乐指数为1,精力为2000。可以理解,如果他消耗完了所有的精力那他得到再多的快乐都没有用。
你的任务就是帮他计算他所能得到的最多的快乐指数,且最后他依然有多余的精力(即至少为1)。
输入格式
第一行输入一个整数n,表示有n道题。(n<=50)
第二行输入n个整数,表示gethappy[1]到gethappy[n]
第三行输入n个整数,表示losspow[1]到losspow[n]。
输出格式
一个整数,表示Lian所能获得的最大快乐指数。
输入样例
3
15 23 61
350 1301 1513
输出样例
77
解题思路:动态规划填二维网格表,表的每一行代表当前可选择的题目,范围从1到n,表的每一列代表当前总共的精力值,范围从1到1999,因为题目初始有2000精力,而要求最终至少剩下1点精力
//跟背包问题类似
#include <cstdio>
#include <iostream>
#include <cstring>
using namespace std;
int dp[50][2005] = {0};
int main()
{
int gethappy[55] = {0}, losspow[55] = {0};
int n, i, j;
cin>>n;
for (i = 1; i <= n; i++)
cin>>gethappy[i];
for (i = 1; i <= n; i++)
cin>>losspow[i];
//填表,在精力有限的条件下获取更多的快乐值,列为精力,总共1999点,因为要求至少剩下1精力,行为题目数目,总共n题
for (i = 1; i <= n; i++)
for (j = 1; j <= 1999; j++)
{
if (j - losspow[i] >= 0 && gethappy[i] + dp[i-1][j-losspow[i]] > dp[i-1][j])
dp[i][j] = gethappy[i] + dp[i-1][j-losspow[i]];
else
dp[i][j] = dp[i-1][j];
}
printf("%d\n",dp[n][1999]+1);//注意最后值要加1,因为初始的快乐值为1不为0
return 0;
}