【深度学习笔记】图像处理领域的不适定问题(ill-posed problem)

本文探讨了数学领域中的适定问题概念,其需满足解的存在性、唯一性和稳定性条件。并详细介绍了图像处理中常见的不适定问题,如图像去噪、图像恢复等,这些问题通常不满足解的唯一性和稳定性条件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

定义

适定问题(well-posed problem),是数学领域的术语,它的成立需满足三个条件,若有一个不满足则称为"ill-posed problem":

  1. a solution exists
    解必须存在

  2. the solution is unique
    解必须唯一

  3. the solution’s behavior changes continuously with the initial conditions.
    解能根据初始条件连续变化,不会发生跳变,即解必须稳定

详情

在图像处理领域中,有很多任务不满足“适定”条件,通常是第二条和第三条。

典型的图像处理不适定问题包括:图像去噪(ImageDe-nosing),图像恢复(Image Restorsion),图像放大(Image Zooming),图像修补(ImageInpainting),图像去马赛克(image Demosaicing),图像超分辨(Image super-resolution),图像去雨去雾去模糊等。

比如做图像超分辨率任务时,由LR图像重建而来的HR图像没有标准答案,解有无数种。更重要的是,这些解都是不稳定的。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

参考

[1] 计算机视觉中的不适定问题(ill-posed problem)
[2] 图像处理中不适定问题(ill posed problem)或称为反问题(inverse Problem)
[3] 深入理解——图像处理领域中的不适定问题(ill-posed problem)或称为反问题(inverse Problem)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值