一、选择题
1、某函数申明如下
void Func(int& nVal1);
有int a,下面使用正确的为()
A Func(a)
B Func(&a)
C Func(*a)
D Func(&(*a))
答案:A
2、C++语言中,类ClassA的构造函数和析构函数的执行次数分别为()
ClassA* pclassa = new ClassA[5];
delete pclassa;
A 5,1
B 1,1
C 5,5
D 1,5
答案:A
解析:
1.malloc/calloc/realloc---->free
2.new ----> detele
3.new[] ----> detele
这三种申请空间的方式一定要匹配使用,否则程序可能会产生内存泄露,或者程序可能会崩溃
new T
1.调用operator new(size) 申请空间 ----> 内部是调用malloc循环申请
2.调用T的构造函数对申请的空间进行初始化
delete P
1.调用析构函数释放p指向对象中的资源
2.调用operator delete释放p所指向的空间 ----> 内部真正释放空间的是调用free
注意:new只能申请单个元素的空间,delete只能释放单个元素的空间
new T[N]
1.调用operator new申请空间 ----> 也是调用operator new(size) 申请空间
2.调用N次T的构造函数
delete[] P
1.调用N次析构函数释放p指向的N个对象
2.调用operator delete释放空间 ----> 也是调用operator delete§
题目中使用delete pclassa;释放空间,只释放了p指向的空间中的一个对象,是不严谨的,运行中可能会产生程序崩溃
3、 动态内存分配(C语言中malloc,C++中的new)得到的存储区属于内存中的:
A 静态区
B 堆(heap)
C 栈(stack)
D 堆栈
E 内核内存
F 不确定
答案:B
4、下列静态数据成员的特性中,错误的是()
A 引用静态数据成员时,要在静态数据成员名前加<类名>和作用域符号
B 说明静态数据成员时前边要加关键字static来修饰
C 静态数据成员在类体外进行初始化
D 静态数据成员不是所有对象所共有的
答案:D
解析:
静态数据成员(静态成员变量):所有对象共享的,并不属于具体的某个对象----在类中声明,然后需要在类外单独进行定义,一定不能在构造函数的初始化列表的位置初始化----在类外访问静态成员变量时:对象.静态成员变量 或者 类名::静态成员变量
5、用class关键字定义的类,其成员默认的访问属性为()
A private
B protected
C public
D 无定义
答案:A
6、在重载一个运算符为成员函数时,其参数表中没有任何参数,这说明该运算符是 ( )
A 无操作数的运算符
B 二元运算符
C 前缀一元运算符
D 后缀一元运算符
答案:C
解析:
一元运算符:指的是该元素只需要一个参数,比如:++、- -
成员函数:每个非静态的成员函数都有一个隐藏的this指针
比如:Dete& operator++() 前置++
Date operator++(int) 后置++
7、有如下程序:
#include<iostream>
using namespace std;
class MyClass {
public:
MyClass(int i = 0) { cout << 1; }
MyClass(const MyClass& x) { cout << 2; }
MyClass& operator=(const MyClass& x) { cout << 3; return*this; }
~MyClass() { cout << 4; }
};
int main() {
MyClass obj1(1), obj2(2), obj3(obj1);
return 0;
}
运行时的输出结果是
A 121,444
B 112,444
C 11,114,444
D 11,314,445
E 11,314,444
答案:B
8、下面有关c++静态数据成员,说法正确的是()
A 不能在类内初始化
B 不能被类的对象调用
C 不能受private修饰符的作用
D 可以直接用类名调用
答案:D
解析:
静态数据成员(静态成员变量):所有对象共享的,并不属于具体的某个对象----在类中声明,然后需要在类外单独进行定义,一定不能在构造函数的初始化列表的位置初始化----在类外访问静态成员变量时:对象.静态成员变量 或者 类名::静态成员变量
有个特殊:const修饰的,可以在类内初始化
class A
{
private:
const static int a = 10;
static int b;
};
int A::b = 20;
9、在C++中,为了让某个类只能通过new来创建(即如果直接创建对象,编译器将报错),应该()
A 将构造函数设为私有
B 将析构函数设为私有
C 将构造函数和析构函数均设为私有
D 没有办法能做到
答案:B
解析:
A类:假设A类的构造函数是私有的
在类外:A* pa = new A[];这是错误的
new原理:1.申请空间
2.调用构造函数对申请的空间进行初始化
假设A类的构造函数是私有的,就不能在构造函数对申请的空间进行初始化,第二步就不能完成了
创建对象期间,只需要申请空间,operator new这个函数就已经处理了。
delete pa;
delete原理:1.调用A类的析构函数
2.释放空间
把析构函数设成私有的,第一步就不能完成了,但是,我们可以给A类增加一个公有的方法:void Release(A*& p) { delete p; }
10、下列的模板声明中,其中几个是正确的()
1)template
2)template<T1,T2>
3)template<class T1,T2>
4)template<class T1,class T2>
5)template<typename T1,T2>
6)template<typename T1,typename T2>
7)template<class T1,typename T2>
8)<typename T1,class T2>
A 2
B 3
C 4
D 5
答案:B
解析:template< class T >、template< typename T >、template< class T1, class T2 >这三种是正确的
其中4、6、7是正确的
二、编程题
1、另类加法
入口:题目链接
题目描述:
题目解析:
本题的意思是自己实现加法,不用现成的运算符
解题思路:
本题可以通过位运算实现,具体实现:两个数求和,其实就是求和后当前位的数据+两个数求和的进位
例如:
1 + 2: 00000001 + 00000010
求和后当前位的数据: 00000011 ; 求和后的进位数据: 没有进位,则 00000000
两者相加,则得到: 00000011 就是3
2 + 2: 00000010 + 00000010
求和后当前位的数据: 00000000, 1和1进位后当前为变成0了
求和后进位的数据: 00000100, 两个1求和后进位了
相加后得到: 00000100 就是4
求和后当前位的数据:简便的计算方法就是两个数进行异或 00000001 ^ 00000010 -> 00000011
求和后进位的数据:简便的计算方法就是两个数相与后左移一位 (00000010 & 00000010) << 1
所以这道题使用递归更加容易理解
代码展示:
class UnusualAdd {
public:
int addAB(int A, int B) {
if (B == 0)return A;
if (A == 0)return B;
int a = A ^ B;//求和后当前位的数据
int b = (A & B) << 1;//求和后进位的数据
return addAB(a, b);//递归两个数进行相加,任意为0时截止
}
};
2、走方格的方案数
入口:题目链接
题目描述:
题目解析:
本题为求取路径总数的题目,一般可以通过递归求解,对于复杂的问题,可以通过动态规划求解。
解题思路:
| 1 | 2 | 3 |
| 4 | 5 | 6 |
| 7 | 8 | 9 |
对于上面的n * m(3 * 3)的格子,有两种情况
a. 如果n或者m为1,则只有一行或者一列,从左上角走到右下角的路径数为n + m
比如: 1 * 1格子,可以先向下走,再向右走,到达右下角;或者先向右走,再向下走,到达右下角,共两条,即 1 + 1 = 2,对于1 * m和 n * m的情况同学们自己画一下
b. 如果n,m都大于1,那么走到[n][m]格子的右下角只有两条路径,
<1>: 从[n - 1][m]格子的右下角向下走,到达
<2>: 从[n][m - 1]格子的右下角向右走,到达
所以走到[n][m]格子的右下角的数量为[n-1][m] + [n][m - 1],可以通过递归实现,情况a为递归的终止条件
递归代码展示:
#include <iostream>
using namespace std;
int pathnum(int n, int m)
{
if (n == 0 || m == 0)
{
return 1;
}
return pathnum(n - 1, m) + pathnum(n, m - 1);
}
int main()
{
int n, m;
while (cin >> n >> m)
{
cout << pathnum(n, m) << endl;
}
}
动态规划代码展示:
#include <iostream>
#include <vector>
using namespace std;
int pathnum(int n, int m)
{
vector<vector<int>> dp(n + 1, vector<int>(m + 1, 1));
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= m; j++)
{
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
return dp[n][m];
}
int main() {
int n, m;
while (cin >> n >> m)
{
cout << pathnum(n, m) << endl;
}
}