RSA 介绍
RSA 算法是非对称密码算法中非常经典的一种算法,使用率非常高,一般用于数据加密和数字签名。
RSA 算法加密的过程是怎样的呢?首先由接收方实例化密钥对,然后将自己的公钥公布出去,这就相当于告诉发送方,如果你要给我发送数据,请使用该公钥对明文进行加密,当接收方收到用公钥加密过后的明文后,需要使用配套的私钥进行解密,又因为该私钥只有接收方自己才有,所以就算数据在传输的过程中被黑客截取,他也不可能将数据破译出来。
下面来看看 RSA 的数学原理
RSA 加密 : 密文 = 明文^E mod N 公钥(E,N)
RSA 解密 : 明文 = 密文^D mod N 私钥 (D, N)
E, D, N 又怎么求呢? 首先获得2 个素数,分别命名为 p, q
1 . N = p * q
2 . L = lcm(p-1, q-1)
3 . E : gcd(E,L) = 1
4 . D : E*D mod L = 1
注: lcm 是求最小公倍数, gcd 是求最大公约数
从上述原理中可以看书,其实最关键的数据就是两个素数,P 和 Q,一旦 p ,q 被黑客获取到,那么就可以轻而易举的破解掉使用公钥加密后的数据。
RSA 算法中的密钥长度是非常长的,介于 512 - 65536 之间(JDK 中默认长度是1024),但是必须是64 的倍数。
RSA 的使用
1 . 生成密钥
pu