LeetCode 1449. 数位成本和为目标值的最大数字

该博客详细介绍了如何利用动态规划解决LeetCode1449题,即在给定数字成本和目标值的条件下,找到能够构成的最大数字。文章通过分析问题本质,将其转化为背包问题,并给出了动态规划的状态转移方程,以及如何通过回溯得到最终答案的代码实现。
摘要由CSDN通过智能技术生成

LeetCode 1449. 数位成本和为目标值的最大数字

题目描述

在这里插入图片描述
在这里插入图片描述

解决方法

动态规划

从题目中我们可以分析得出,要想找到较大的数字,那么这个数字的位数一定要多,也就是4位数字要大于3位数字,另一个是大的数字要排在前面,例如7772一定大于2777。按照这个思路,该问题可以拆成两个问题:一个是能否找到数字负载和为 t a r g e t target target的组合,且这个组合所包含的数字数目最多;另一个是如何记录中间的组合数。

这个问题可以看做是另类的背包问题,即总体负载为 t a r g e t target target,每个物品负重为 c o s t cost cost,价值为1,要找到恰好等于 t a r g e t target target负载的最大价值数。
定义 d p [ 10 ] [ t a r g e t + 1 ] dp[10][target+1] dp[10][target+1],初始化 d p [ i ] [ j ] = I N T _ M I N dp[i][j]=INT\_MIN dp[i][j]=INT_MIN d p [ 0 ] [ 0 ] = 0 dp[0][0]=0 dp[0][0]=0
在这里插入图片描述
除了有动态规划的转移矩阵外,我们还需要记录中间结果的过程。我们需要记录转移的过程,即记录一个二元祖 ( l a s t N u m , w e i g h t ) (lastNum, weight) (lastNum,weight),即分别记录转移到当前的上一个数字以及对应的重量。所以我们定义一个数组 f r o m [ i ] [ j ] from[i][j] from[i][j]表示这个含义。当 d p [ i ] [ j ] = d p [ i − 1 ] [ j ] 时 , f r o m [ i ] [ j ] = j dp[i][j]=dp[i-1][j]时,from[i][j]=j dp[i][j]=dp[i1][j]from[i][j]=j
在计算完成之后,我们需要从from数组中回溯得到答案,由于我们之前已经知道,大的数字在前才能使数字最大,所以我们采用从后向前回溯,同时每次将字符拼接到字符串的末尾。
代码如下:

class Solution {
public:
    string largestNumber(vector<int>& cost, int target) {
        vector<vector<int>> dp(10, vector<int>(target+1, INT_MIN));
        vector<vector<int>> from(10, vector<int>(target+1));
        dp[0][0] = 0;
        
        for(int i=1;i<10;i++){
            int curCost = cost[i-1];
            for(int j=0;j<=target;j++){
                if(j<curCost){
                    dp[i][j] = dp[i-1][j];
                    from[i][j] = j;
                }
                else{
                    int temp = dp[i][j-curCost]+1;
                    if(temp>=dp[i-1][j]){ 
                        //注意,上面等于也要更新,因为这样可以更新到更大数字组合
                        
                        dp[i][j] = temp;
                        from[i][j] = j-curCost;
                    }
                    else{
                        dp[i][j] = dp[i-1][j];
                        from[i][j] = j;
                    }
                }
            }
        }

        if(dp[9][target]<0){ 
            //注意,由于之前等于号也要更新数值,所以有些没有含义的数值会被更新成INT_MIN+n的值,并不等于INT_MIN,所以一定得是小于0的判断条件才行
            return "0";
        }
        
        string ans="";
        int curTar = target;
        for(int i=9;i>0;i--){
            while(from[i][curTar] != curTar){
                ans+=('0'+i);
                curTar = from[i][curTar];
            }
        }

        return ans;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值