题目描述
解决方法
动态规划
从题目中我们可以分析得出,要想找到较大的数字,那么这个数字的位数一定要多,也就是4位数字要大于3位数字,另一个是大的数字要排在前面,例如7772一定大于2777。按照这个思路,该问题可以拆成两个问题:一个是能否找到数字负载和为 t a r g e t target target的组合,且这个组合所包含的数字数目最多;另一个是如何记录中间的组合数。
这个问题可以看做是另类的背包问题,即总体负载为
t
a
r
g
e
t
target
target,每个物品负重为
c
o
s
t
cost
cost,价值为1,要找到恰好等于
t
a
r
g
e
t
target
target负载的最大价值数。
定义
d
p
[
10
]
[
t
a
r
g
e
t
+
1
]
dp[10][target+1]
dp[10][target+1],初始化
d
p
[
i
]
[
j
]
=
I
N
T
_
M
I
N
dp[i][j]=INT\_MIN
dp[i][j]=INT_MIN,
d
p
[
0
]
[
0
]
=
0
dp[0][0]=0
dp[0][0]=0。
除了有动态规划的转移矩阵外,我们还需要记录中间结果的过程。我们需要记录转移的过程,即记录一个二元祖
(
l
a
s
t
N
u
m
,
w
e
i
g
h
t
)
(lastNum, weight)
(lastNum,weight),即分别记录转移到当前的上一个数字以及对应的重量。所以我们定义一个数组
f
r
o
m
[
i
]
[
j
]
from[i][j]
from[i][j]表示这个含义。当
d
p
[
i
]
[
j
]
=
d
p
[
i
−
1
]
[
j
]
时
,
f
r
o
m
[
i
]
[
j
]
=
j
dp[i][j]=dp[i-1][j]时,from[i][j]=j
dp[i][j]=dp[i−1][j]时,from[i][j]=j。
在计算完成之后,我们需要从from数组中回溯得到答案,由于我们之前已经知道,大的数字在前才能使数字最大,所以我们采用从后向前回溯,同时每次将字符拼接到字符串的末尾。
代码如下:
class Solution {
public:
string largestNumber(vector<int>& cost, int target) {
vector<vector<int>> dp(10, vector<int>(target+1, INT_MIN));
vector<vector<int>> from(10, vector<int>(target+1));
dp[0][0] = 0;
for(int i=1;i<10;i++){
int curCost = cost[i-1];
for(int j=0;j<=target;j++){
if(j<curCost){
dp[i][j] = dp[i-1][j];
from[i][j] = j;
}
else{
int temp = dp[i][j-curCost]+1;
if(temp>=dp[i-1][j]){
//注意,上面等于也要更新,因为这样可以更新到更大数字组合
dp[i][j] = temp;
from[i][j] = j-curCost;
}
else{
dp[i][j] = dp[i-1][j];
from[i][j] = j;
}
}
}
}
if(dp[9][target]<0){
//注意,由于之前等于号也要更新数值,所以有些没有含义的数值会被更新成INT_MIN+n的值,并不等于INT_MIN,所以一定得是小于0的判断条件才行
return "0";
}
string ans="";
int curTar = target;
for(int i=9;i>0;i--){
while(from[i][curTar] != curTar){
ans+=('0'+i);
curTar = from[i][curTar];
}
}
return ans;
}
};