生产者——消费者问题算法的实现

本文介绍了如何使用C++实现生产者-消费者问题,通过信号量机制控制生产者和消费者的同步,避免缓冲区满和空的情况。文章包含了源代码、运行结果及实验结论,加深了对进程同步和信号量的理解。
摘要由CSDN通过智能技术生成

一、实验内容

一组生产者向一组消费者提供消息,它们共享一个有界缓冲池,生产者向其中投放消息,消费者从中取得消息。消费者从中取得消息。假定这些生产者和消费者互相等效,只要缓冲池未满,生产者可将消息送入缓冲池,只要缓冲池未空,消费者可从缓冲池取走一个消息。

二、背景知识

生产者消费者问题(英语:Producer-consumer problem),也称有限缓冲问题(英语:Bounded-buffer problem),是一个多线程同步问题的经典案例。该问题描述了两个共享固定大小缓冲区的线程——即所谓的“生产者”和“消费者”——在实际运行时会发生的问题。生产者的主要作用是生成一定量的数据放到缓冲区中,然后重复此过程。与此同时,消费者也在缓冲区消耗这些数据。该问题的关键就是要保证生产者不会在缓冲区满时加入数据,消费者也不会在缓冲区中空时消耗数据。

三、思路

创建一个生产者消费者类,在类中定义生产者和消费者两个函数,通过信号量进行生产和消费的操作。再建立一个show函数对缓冲区情况进行输出。建立一个菜单,方便使用者自行进行生产和消费的操作。

四、源程序清单

#include<iostream>

#include<stdlib.h>

#include<time.h>

using namespace std;

#define N 100

class PC

{private:

   int in,out;

   int count;

   int mutex;

   int empty,full;

   int buffer[N];

  

public:

   PC()

   {

   in=0;out=0;mutex=1;empty=N;full=0;count=0;

       for(int i=0;i<N;i++)

       buffer[i]=0;

   }

好的,我可以为您提供一个Python实现的有界缓冲池,满足您的需求。代码如下所示: ```python import threading import queue import time class BoundedBuffer: def __init__(self, maxsize): self.maxsize = maxsize self.buffer = queue.Queue(maxsize) self.mutex = threading.Lock() self.empty = threading.Condition(self.mutex) self.full = threading.Condition(self.mutex) def put(self, item): with self.full: while self.buffer.full(): self.full.wait() self.buffer.put(item) self.empty.notify() def get(self): with self.empty: while self.buffer.empty(): self.empty.wait() item = self.buffer.get() self.full.notify() return item def get_buffer_info(self): with self.mutex: return {'size': self.buffer.qsize(), 'maxsize': self.maxsize} class Producer(threading.Thread): def __init__(self, buffer): threading.Thread.__init__(self) self.buffer = buffer self.stop_event = threading.Event() def run(self): while not self.stop_event.is_set(): item = time.time() # 生产一个元素 self.buffer.put(item) print(f'生产者 {self.name} 生产了一个元素 {item}') time.sleep(1) def stop(self): self.stop_event.set() class Consumer(threading.Thread): def __init__(self, buffer): threading.Thread.__init__(self) self.buffer = buffer self.stop_event = threading.Event() def run(self): while not self.stop_event.is_set(): item = self.buffer.get() print(f'消费者 {self.name} 消费了一个元素 {item}') time.sleep(1) def stop(self): self.stop_event.set() if __name__ == '__main__': buffer = BoundedBuffer(5) producers = [Producer(buffer) for i in range(2)] consumers = [Consumer(buffer) for i in range(3)] for p in producers: p.start() for c in consumers: c.start() while True: try: time.sleep(5) print(f'缓冲池状态: {buffer.get_buffer_info()}') except KeyboardInterrupt: print('停止生产者消费者线程...') for p in producers: p.stop() for c in consumers: c.stop() break ``` 在上面的代码中,我们首先定义了一个 `BoundedBuffer` 类,这个类封装了一个有界缓冲池,并提供了 `put` 和 `get` 方法,用于往缓冲池中放入和取出元素。缓冲池实现使用了 Python 的 `queue.Queue` 类,这个类本身就是线程安全的,所以不需要再使用锁进行同步。 在 `BoundedBuffer` 类中,我们使用了三个锁:`mutex`、`empty` 和 `full`。其中,`mutex` 是用于保护缓冲池的数据结构,`empty` 和 `full` 分别是用于控制消费者生产者的等待条件。当缓冲池为空时,消费者会等待 `empty` 条件变量,当缓冲池为满时,生产者会等待 `full` 条件变量。 然后,我们定义了 `Producer` 和 `Consumer` 两个类,分别表示生产者消费者线程。这两个类都继承自 `threading.Thread` 类,并实现了 `run` 方法。在 `run` 方法中,生产者会不断地向缓冲池中放入元素,而消费者会不断地从缓冲池中取出元素。这里我们使用了一个 `stop_event` 变量,用于控制线程的停止。 最后,在主程序中,我们创建了两个生产者和三个消费者线程,并启动它们。同时,我们也启动了一个循环,每隔一段时间就打印出缓冲池的状态。当用户按下 Ctrl+C 时,程序会捕捉到 `KeyboardInterrupt` 异常,然后停止生产者消费者线程,退出程序。 综上所述,这个程序实现了有界缓冲池的基本功能,包括线程的同步和互斥、异常处理、状态显示等。您可以根据需要进行修改和扩展。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值