题目: 62. 不同路径
题目链接:62. 不同路径
思路分析:
- 建立dp数组,定义dp[i][j]为:从起点到位置(i,j)时的路径总数。由加法原理和“每次只能向下或者向右移动一步”可以知道:“走到(i,j)”由“走到(i-1,j)”或者“走到(i,j-1)”得到,故“走到(i,j)”的方法总数就是“走到(i-1,j)”和“走到(i,j-1)”的总和。即状态转移方程为dp[i][j]=dp[i-1][j]+dp[i][j-1]。
- 第一行和第一列都只对应了一种走法,故可以将其初始化为1。
AC代码:
class Solution {
public:
int uniquePaths(int m, int n) {
if(m==0||n==0) return 0; / /行或列为0,则没有路径
vector<vector<int>>dp(m+1,vector<int>(n+1,0)); / /构造dp数组并初始化为0
for(int i=1;i<=m;i++) dp[i][1]=1; / /初始化第一列为1
for(int i=1;i<=n;i++) dp[1][i]=1; / /初始化第一行为1
for(int i=2;i<=m;i++) / /两层循环递推出dp数组
for(int j=2;j<=n;j++)
dp[i][j]=dp[i-1][j]+dp[i][j-1];
return dp[m][n]; / /dp[m][n]即为到达右下角的方法总数
}
};
题目: 63. 不同路径 II
题目链接:63. 不同路径 II
思路分析:
- 在上一题的基础上添加了“障碍物”。假设(i,j)处出现“障碍物”,则dp[i][j]对dp[i+1][j]和dp[i][j+1]的值没有贡献,所以把dp[i][j]的值置为0,就实现了对“障碍物”的处理。
- 假设此题仅在62题的基础上做“(i,j)处出现“障碍物“就把dp[i][j]的值置为0”这样的更改的话,那对于dp数组第一行和第一列的初始化就不太方便了:假设第一行的某个位置(或第一列)出现了”障碍物“,则第一行(或第一列)后面的值都要置为0。思路简单,但是代码实现就显得不太"优雅"。
- 为了使代码"优雅"些,我们把网格中的(i,j)位置和dp数组的dp[i+1][j+1]对应。此时就只用初始化dp[0][1]为1即可。
AC代码:
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
int m=obstacleGrid.size();
if(m==0) return 0;
int n=obstacleGrid[0].size();
if(n==0) return 0; / /网格的行数或列数为0就不存在路径
vector<vector<int>>dp(m+1,vector<int>(n+1,0)); / /构造dp数组并初始化为0
dp[0][1]=1; / /初始化边界
for(int i=1;i<=m;i++)
for(int j=1;j<=n;j++)
if(obstacleGrid[i-1][j-1]==1) dp[i][j]=0; / /网格中出现“障碍物”时,将对应的dp值置为0
else dp[i][j]=dp[i-1][j]+dp[i][j-1];
return dp[m][n]; / /dp[m][n]即为到达右下角的方法总数
}
};
总结:
-
加法原理回顾:
-
很多计数类的dp(求方案数、求路径数等)都有“加法原理”的思想,关键是构造状态转移方程时明确“前一类方法中是有那些方法”。