简单实现GC编码

代码结构如下: 其中sensorNode代码有(第一次实现没有经验,以后肯定会改进的): package Super; import java.util.ArrayList; import java.util.Iterator; import java.util.List; import j...

2018-10-24 15:29:14

阅读数 23

评论数 0

GBDT

精确算法1:计算量比较大 近似方法: logloss:

2018-10-12 15:30:40

阅读数 76

评论数 0

卡方检验

什么是卡方检验 卡方检验是一种用途很广的计数资料的假设检验方法。它属于非参数检验的范畴,主要是比较两个及两个以上样本率( 构成比)以及两个分类变量的关联性分析。其根本思想就是在于比较理论频数和实际频数的吻合程度或拟合优度问题。 它在分类资料统计推断中的应用,包括:两个率或两个构成比比较的卡方检验...

2018-10-06 20:48:57

阅读数 161

评论数 0

SVD简单讲解(易懂)

转载有乱码,,附上原文链接:https://blog.csdn.net/u010099080/article/details/68060274   假设有 m×nm×n 的矩阵 AA ,那么 SVD 就是要找到如下式的这么一个分解,将 AA 分解为 3 个矩阵的乘积:   Am×n=Um×...

2018-10-06 20:24:27

阅读数 53

评论数 0

HMM维特比算法

维特比算法 利用动态规划求解概率最大的路径,一条路径一个状态序列。 动态规划求解最优路径专责:如果最优路径在某时刻t 通过节点i,那么这条路径从节点 i 到终点的部分路径,在节点 i 到终点的路径中,必须是最优的。 通过这种原理就可以从t=1时刻开始,不断向后递推到下一个状态的路径的最大概率...

2018-10-03 14:35:00

阅读数 97

评论数 0

隐马尔科夫模型

上一篇简单提了一下马尔科夫模型,然后这是他的升级版隐马尔科夫模型的讲解。是状态+观测序列的组合。 首先,这是马尔科夫三个假设,有观测值序列O=O1,O2,O3,O4.....OT,有隐状态序列:Q=q1,q2,q4,q5....qT   隐马尔科夫的定义: 概率计算问题 HMM的概率...

2018-10-03 14:15:37

阅读数 55

评论数 0

马尔科夫模型

一、马尔科夫链 一个系统在t时刻的状态只与在时刻t-1的状态相关,则构成了一个离散的一阶马尔科夫链,可以就通俗的理解成昨天的天气对今天的天气的影响即可。公式为: 二、马尔科夫模型 加入只考虑独立于时刻t的随机过程,则满足以下两个公式的随机过程称为马尔科夫模型 且 举个栗子: 得出结果:...

2018-10-03 13:24:19

阅读数 244

评论数 0

【笔记】隐语义模型

首先,存在一个用户电影打分矩阵Y,然后你要做的任务就是将这个矩阵分解为一个用户特征矩阵X,一个电影特征矩阵Q,即X矩阵里面是一些用户的特征,在给用户推荐时你可以根据计算用户的特征矩阵的皮尔逊相似度找出最相似的用户,然后进行你后期的一些推荐;Q里面是一些电影的特征,你要找一些相似电影的时候,可以计算...

2018-09-20 09:42:39

阅读数 48

评论数 0

【协同过滤笔记】冷启动问题

(1)用户冷启动 (2)物品冷启动

2018-09-20 09:22:43

阅读数 112

评论数 0

【笔记】pearson相关系数

首先计算协方差,然后用协方差去除以变量标准差之积,去得到两个变量之间的一个皮尔逊相关系数。 协方差可以理解为两个向量之间的变化趋势一样,一个增大时另一个也增大,即一致,变化范围为【-1,1】,若为+1,则为正相关,若为-1,则为负相关,即下图的两种情况。 最后的一个计算的具体步骤为: ...

2018-09-20 09:08:33

阅读数 77

评论数 0

朴素贝叶斯

今天看来朴素贝叶斯,最大的进步我觉得就是知道了她的一个非常重要的用途,用作文本分类任务,下面是copy两个大佬的代码,用来进行记忆: #!/usr/bin/python # coding:utf-8 from numpy import * from math import * def lo...

2018-09-16 20:24:49

阅读数 14

评论数 0

KNN中的kd树笔记

首先,讲一下kd树的概念,实现k近邻法时,主要考虑的问题是如何对训练数据进行快速k近邻搜索。这在特征空间的维数大及训练数据容量大时尤其必要。k近邻法最简单的实现是线性扫描(穷举搜索),即要计算输入实例与每一个训练实例的距离。计算并存储好以后,再查找K近邻。当训练集很大时,计算非常耗时。为了提高kN...

2018-09-16 16:34:15

阅读数 18

评论数 0

梯度概念

梯度是一个向量;既有大小,也有方向。     函数z=f(x,y)在点P0处的梯度方向是函数变化率(即方向导数)最大的方向。  梯度的方向就是函数f(x,y)在这点增长最快的方向,梯度的模为方向导数的最大值。  梯度的本意是一个向量(矢量),表示某一函数在该点处的方向导数沿着该方向取得最大值...

2018-09-16 13:05:08

阅读数 99

评论数 0

机器学习第一章

今天进行了机器学习第一章的学习,我觉得首先你可以认清这些概念           (1)模型、策略、算法           (2)分类与回归的概念           (3)监督、无监督、半监督问题           (2)过拟合、欠拟合   下面是拓展的一些概念: 海森矩阵: ...

2018-09-15 20:32:09

阅读数 26

评论数 0

ssm开发与实战

最近为了做毕设开始学习了ssm框架,所以写下自己学习中的一些心得体会,供自己参考。 首先,我们应该先了解一些ssm的概念。 SSM框架是spring MVC ,spring和mybatis框架的整合,是标准的MVC模式,将整个系统划分为表现层,controller层,service层,DAO层...

2018-04-19 15:39:51

阅读数 291

评论数 0

随笔《获得easyui datagrid combobox下拉框的数据》

//第一种获取datagrid的方法 /* var tidd = $('#teachertb').datagrid('getEditor', {index:editIndex,field:'tid'}); var tid = $(tidd.target).val(); var tname...

2018-01-12 11:47:36

阅读数 714

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭