基本思路:
这道题用滑动窗口可解
什么是滑动窗口?
字符串abcabcbb 为例
我们列举出这些结果,其中括号中表示选中的字符以及最长的字符串:
以 (a)bcabcbb开始的最长字符串为 (abc)abcbb;
以a(b)cabcbb开始的最长字符串为 a(bca)bcbb;
以 ab(c)abcbb开始的最长字符串为 ab(cab)cbb;
以abc(a)bcbb 开始的最长字符串为 abc(abc)bb;
以 abca(b)cbb开始的最长字符串为abca(bc)bb;
以 abcab(c)bb开始的最长字符串为 abcab(cb)b;
以 abcabc(b)b 开始的最长字符串为abcabc(b)b;
以abcabcb(b) 开始的最长字符串为 abcabcb(b);
本体解法:
我们使用两个指针表示字符串中的某个子串(或窗口)的左右边界,其中左指针代表着上文中「枚举子串的起始位置」,而右指针即为上文中的rk;
在每一步的操作中,我们会将左指针向右移动一格,表示 我们开始枚举下一个字符作为起始位置,然后我们可以不断地向右移动右指针,但需要保证这两个指针对应的子串中没有重复的字符。在移动结束后,这个子串就对应着 以左指针开始的,不包含重复字符的最长子串。我们记录下这个子串的长度;
在枚举结束后,我们找到的最长的子串的长度即为答案
代码实现:
class Solution {
public int lengthOfLongestSubstring(String s) {
//建立一个哈希集合,记录每个字符是否出现过
Set<Character> AA = new HashSet<Character>();
//输入字符串的长度
int n = s.length();
//定义输出字符串的长度
int ans = 0;
//定义右指针,初始值为-1,相当于在字符串左边界的左侧,还没开始移动
int rk = -1;
//遍历字符串
for(int i =0; i<n;i++){
//当i不等于0时,去除滑动窗口的前一个字符
if(i != 0){
AA.remove(s.charAt(i - 1));
}
//判断现存窗口中是否存在重复字符,若不存在右移右指针
while(rk + 1 < n && !AA.contains(s.charAt(rk+1))){
AA.add(s.charAt(rk+1));
rk++;
}
//通过Math.max方法找出长度最大的滑动窗口
ans = Math.max(ans,rk - i + 1);
}
return ans;
}
}