在有限元分析中,线性分析是最基本的分析类型、包括线性动力学分析及线性静力学分析察主豪介绍武性分析中的线性静力学、线性居曲及惯性释放这儿种分析类型,及在线性分析币到的材料、单元类型及约束与载荷,为后续的复杂分析类型提供基础知识。
线性静力学分析基本理论3.1
静力学分析严格来说都是非线性分析,因为平衡方程需要建立在变形后的几何上面。但是斯用线弹性材料,变形足够小以至于平衡方程可直接建立在变形前几何上时,此类分析可近但采用性分析,即为线性静力学分析。线性静力学分析中,结构需要求解的基本有限元方程为
Ku =F
(34式中,K为结构的刚度矩阵(各个单元刚度矩阵的组合),取决于结构的几何及材料参数,与位现无关;"为位移向量;F为作用在结构上的载荷向量。
该方程的本质是外力和内力在各个自由度上的平衡。该方程组只有在施加足够约束时,刚度阵才是非奇异阵,才有唯一解。
平衡方程可以通过直接法或迭代法求解,默认情况下会调用直接法求解。直接求解法相对健、准确、高效,迭代法在实体结构的求解速度方面有时候有一定的优势。线性方程的求解算法通过 SOLVTYP设置,在SUBCASE中引用生效。在求解完平衡方程后,可得到节点位移,通过几方程由节点位移求解应变,通过材料本构关系求解应力。
3.2 线性屈曲分析基本理论
屈曲是除强度、刚度外,工程中关心的又一个重要课题。屈曲有时也叫失稳,指结构在载荷不再增加的情况下继续变形而丧失稳定性的现象。屈曲问题主要发生在细长杆件或薄壁结构中,比汽车连杆和飞机蒙皮结构的屈曲破坏。屈曲又分为线性屈曲和非线性屈曲,本节只介绍0pisinuc的线性屈曲分析功能,即不考虑加载过程中几何刚度的变化&#