原根和阶的口胡笔记

阶和原根

定义

m > 1 , m ∈ Z , g c d ( a , m ) = 1 , ∃ r ∈ [ 1 , m − 1 ] m > 1, m \in Z, gcd(a, m) = 1, \exist r \in[1, m - 1] m>1,mZ,gcd(a,m)=1,r[1,m1] 使得 a r ≡ 1 ( m o d m ) a^{r} \equiv 1 \pmod m ar1(modm),满足条件的 r r r 中最小的一个就是 a a a m m m 的阶

一些性质

  因为 g c d ( a , m ) = 1 gcd(a, m) = 1 gcd(a,m)=1 所以 a 0 , a 1 , a 2 , ⋯   , a m − 1 a^0, a^1, a^2, \cdots, a^{m -1} a0,a1,a2,,am1 都与 m m m 互质(这里有 m m m 个数)。又因为:

{ a 0 m o d    m a 1 m o d    m a 2 m o d    m ⋮ a m − 1 m o d    m \begin{cases} a^0 \mod m \\ a^1 \mod m \\ a^2 \mod m \\ \vdots \\ a^{m -1} \mod m \end{cases} a0modma1modma2modmam1modm

  这些数一共有 m − 1 m - 1 m1 种取值(因为都互质),所以一定 ∃ i ≤ j ∈ [ 0 , m − 1 ] \exist i \leq j \in [0, m - 1] ij[0,m1],使得 a i ≡ a j ( m o d m ) a^i \equiv a^j \pmod m aiaj(modm) 也就是 a i − j ≡ 1 ( m o d m ) a^{i - j} \equiv 1 \pmod m aij1(modm),所以 r = i − j , r ∈ [ 1 , m − 1 ] r = i - j, r \in[1, m - 1] r=ij,r[1,m1],有了这个我们就可以在 O ( m log ⁡ m ) O(m\log m) O(mlogm) 的时间内求出 r r r 了。

  根据原根的定义我们可以知道如果 a N ≡ 1 ( m o d m ) a^N \equiv 1 \pmod m aN1(modm) 那么 r ∣ N r | N rN。又因为欧拉定理长这样:

a φ ( m ) ≡ 1 ( m o d m ) a^{\varphi(m)} \equiv 1 \pmod m aφ(m)1(modm)

  所以我们又能知道一定有 r ∣ φ ( m ) r | \varphi(m) rφ(m)

  除了这个根据 a N ≡ 1 ( m o d m ) a^N \equiv 1 \pmod m aN1(modm) 那么 r ∣ N r | N rN,我们还可以推出:

  1. ∀ u , v ∈ Z , a u ≡ a v ( m o d m ) \forall u, v \in Z, a^u \equiv a^v \pmod m u,vZ,auav(modm) 这个式子的充要条件是 u ≡ v ( m o d r ) u \equiv v \pmod r uv(modr)(很显然吧)。
  2. a 1 , a 2 , a 3 , ⋯   , a r a^1, a^2, a^3, \cdots , a^r a1,a2,a3,,ar m m m 是以 r r r 为周期且它们模 r r r 互不相同(由上一个性质很容易看出来吧)

原根

定义

g c d ( g , m ) = 1 , g gcd(g, m) = 1, g gcd(g,m)=1,g m m m 的阶为 φ ( m ) \varphi(m) φ(m),就称 g g g 是模 m m m 的一个原根 (其实就是 g φ ( m ) ≡ 1 ( m o d m ) g^{\varphi(m)} \equiv 1 \pmod m gφ(m)1(modm)

一些性质

  根据上面的定义我们知道:

g φ ( m ) ≡ 1 ( m o d m ) g^{\varphi(m)} \equiv 1 \pmod m gφ(m)1(modm)

  又因为 r ∣ φ ( m ) r | \varphi(m) rφ(m),所以 r = φ ( m ) r = \varphi(m) r=φ(m)。那么显然 { g 1 , g 2 , g 3 , ⋯   , g φ ( m ) } \{g^1, g^2, g^3, \cdots, g^{\varphi(m)} \} {g1,g2,g3,,gφ(m)} 就是一个简化剩余系。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值