题目描述
给定长度为 n 的无序的数字数组,每个数字代表二叉树的叶子节点的权值,数字数组的值均大于等于1。
请完成一个函数,根据输入的数字数组,生成哈夫曼树,并将哈夫曼树按照中序遍历输出。
为了保证输出的二叉树中序遍历结果统一,增加以下限制:
二叉树节点中,左节点权值小于右节点权值,根节点权值为左右节点权值之和。当左右节点权值相同时,左子树高度小于等于右子树高度。
注意:
所有用例保证有效,并能生成哈夫曼树。
提醒:
哈夫曼树又称为最优二叉树,是一种带权路径长度最短的二叉树。
所谓树的带权路径长度,就是树中所有的叶节点的权值乘上其到根节点的路径长度(若根节点为 0 层,叶节点到根节点的路径长度为叶节点的层数)
输入描述
例如:由叶子节点:5 15 40 30 10,生成的最优二叉树如下图所示,该树的最短带权路径长度为:40 * 1 + 30 * 2 + 5 * 4 + 10 * 4 = 205。
输出描述
输出一个哈夫曼树的中序遍历数组,数值间以空格分隔
用例1
输入
5
5 15 40 30 10
输出
40 100 30 60 15 30 5 15 10
说明
根据输入,生成哈夫曼树,按照中序遍历返回。所有节点中,左节点权值小于等于右节点权值之和。当左右节点权值相同时,左子树高度小于右子树。
#需要注意的是,只有当左右权值相同时才需要保证左子树高度小于等于右子树高度
import heapq
class Node:
def __init__(self,lc,rc,height,weight):
self.lc = lc #左孩子
self.rc = rc #右孩子
self.height = height #子树高度
self.weight = weight #权重
def __gt__(self, other):
#权重不同时,权重小的优先级高;相同时,高度小的优先级高
if self.weight!=other.weight:
return self.weight>other.weight
else:
return self.height>other.height
def midorder(root,seq):
if root.lc is not None:
midorder(root.lc,seq)
seq.append(root.weight)
if root.rc is not None:
midorder(root.rc,seq)
n=int(input())
weights = list(map(int,input().split()))
#创建哈夫曼节点并加入到优先队列中
pq=[]
for weight in weights:
heapq.heappush(pq,Node(None,None,0,weight))
while len(pq)>1:
#取出两个最小的节点
lc = heapq.heappop(pq)
rc = heapq.heappop(pq)
#合并节点
fa_weight = lc.weight+rc.weight
fa_height = max(lc.height,rc.height)+1
heapq.heappush(pq,Node(lc,rc,fa_height,fa_weight))
root = heapq.heappop(pq)
seq=[]
midorder(root,seq)
print(' '.join(map(str,seq)))