关于 1 + 1 = 2 的证明

1 + 1 = 2

首先是皮亚诺的自然数公理

  意大利数学家皮亚诺提出的关于自然数的 5 5 5 条公理如下(定义 S ( x ) S(x) S(x) 为自然数 x x x 的后继):

  1. 0 0 0 是自然数
  2. 每一个自然数 n n n 都有一个自然数后继记为 S ( n ) S(n) S(n)
  3. 0 0 0 不是任何自然数的后继(这一条定义了自然数的起始
  4. 如果两个自然数的后继相等,那么这两个自然数相等(显而易见
  5. 如果有一个数学性质在 0 0 0 上成立,并且对于任何自然数 n n n 这条数学性质在 n n n S ( x ) S(x) S(x) 上成立,那么这个性质对于所有自然数成立(这就是数学归纳法

然后是加法的定义

  一下是加法的定义,共两条(我把乘法的定义也写上来了 qwq:

  1. ∀ x , x + 0 = x \forall x,x + 0 = x xx+0=x
  2. ∀ x , y , x + S ( y ) = S ( x + y ) \forall x,y,x + S(y) = S(x + y) x,yx+S(y)=S(x+y)
  3. ∀ x , x ⋅ 0 = 0 \forall x,x \cdot 0 = 0 xx0=0
  4. ∀ x , y , x ⋅ S ( y ) = ( x ⋅ y ) + x \forall x, y,x \cdot S(y) = (x \cdot y) + x x,yxS(y)=(xy)+x

  上面这些定义都非常显而易见,很显然这些定义满足我们对自然数的认知。

最后是极其简单的证明

  证明过程非常简单:

  首先我们把式子列出来 1 + 1 1 + 1 1+1

  然后我们知道 S ( 0 ) = 1 S(0) = 1 S(0)=1 所以:

1 + 1 = 1 + S ( 0 ) 1 + 1 = 1 + S(0) 1+1=1+S(0)

  又因为 ∀ x , y , x + S ( y ) = S ( x + y ) \forall x,y,x + S(y) = S(x + y) x,yx+S(y)=S(x+y),所以:

1 + 1 = 1 + S ( 0 ) = S ( 1 + 0 ) 1 + 1 = 1 + S(0) = S(1 + 0) 1+1=1+S(0)=S(1+0)

  又因为 ∀ x , x + 0 = x \forall x,x + 0 = x xx+0=x,所以:

1 + 1 = 1 + S ( 0 ) = S ( 1 + 0 ) = S ( 1 ) 1 + 1 = 1 + S(0) = S(1 + 0) = S(1) 1+1=1+S(0)=S(1+0)=S(1)

  最后因为 1 1 1 的后继是 2 2 2 所以:

1 + 1 = 1 + S ( 0 ) = S ( 1 + 0 ) = S ( 1 ) = 2 1 + 1 = 1 + S(0) = S(1 + 0) = S(1) = 2 1+1=1+S(0)=S(1+0)=S(1)=2

  证毕

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值